Lös ut x
x = \frac{3 \sqrt{9389} + 1}{5} \approx 58,338111424
x=\frac{1-3\sqrt{9389}}{5}\approx -57,938111424
Graf
Aktie
Kopieras till Urklipp
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
Multiplicera 0 och 25 för att få 0.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Noll plus något blir detta något.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
Beräkna 65 upphöjt till 2 och få 4225.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\left(-\frac{1}{2}\right)^{2}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Den här ekvationen är skriven i standardform: ax^{2}+bx+c=0. Ersätt a med \frac{5}{4}, b med -\frac{1}{2} och c med -4225 i andragradsekvationen \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-4\times \frac{5}{4}\left(-4225\right)}}{2\times \frac{5}{4}}
Kvadrera -\frac{1}{2} genom att kvadrera både täljaren och nämnaren i bråktalet.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}-5\left(-4225\right)}}{2\times \frac{5}{4}}
Multiplicera -4 med \frac{5}{4}.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{1}{4}+21125}}{2\times \frac{5}{4}}
Multiplicera -5 med -4225.
x=\frac{-\left(-\frac{1}{2}\right)±\sqrt{\frac{84501}{4}}}{2\times \frac{5}{4}}
Addera \frac{1}{4} till 21125.
x=\frac{-\left(-\frac{1}{2}\right)±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
Dra kvadratroten ur \frac{84501}{4}.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{2\times \frac{5}{4}}
Motsatsen till -\frac{1}{2} är \frac{1}{2}.
x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}}
Multiplicera 2 med \frac{5}{4}.
x=\frac{3\sqrt{9389}+1}{2\times \frac{5}{2}}
Lös nu ekvationen x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} när ± är plus. Addera \frac{1}{2} till \frac{3\sqrt{9389}}{2}.
x=\frac{3\sqrt{9389}+1}{5}
Dela \frac{1+3\sqrt{9389}}{2} med \frac{5}{2} genom att multiplicera \frac{1+3\sqrt{9389}}{2} med reciproken till \frac{5}{2}.
x=\frac{1-3\sqrt{9389}}{2\times \frac{5}{2}}
Lös nu ekvationen x=\frac{\frac{1}{2}±\frac{3\sqrt{9389}}{2}}{\frac{5}{2}} när ± är minus. Subtrahera \frac{3\sqrt{9389}}{2} från \frac{1}{2}.
x=\frac{1-3\sqrt{9389}}{5}
Dela \frac{1-3\sqrt{9389}}{2} med \frac{5}{2} genom att multiplicera \frac{1-3\sqrt{9389}}{2} med reciproken till \frac{5}{2}.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
Ekvationen har lösts.
\frac{5}{4}x^{2}-\frac{1}{2}x+0-65^{2}=0
Multiplicera 0 och 25 för att få 0.
\frac{5}{4}x^{2}-\frac{1}{2}x-65^{2}=0
Noll plus något blir detta något.
\frac{5}{4}x^{2}-\frac{1}{2}x-4225=0
Beräkna 65 upphöjt till 2 och få 4225.
\frac{5}{4}x^{2}-\frac{1}{2}x=4225
Lägg till 4225 på båda sidorna. Noll plus något blir detta något.
\frac{\frac{5}{4}x^{2}-\frac{1}{2}x}{\frac{5}{4}}=\frac{4225}{\frac{5}{4}}
Dela båda ekvationsled med \frac{5}{4}, vilket är detsamma som att multiplicera båda led med bråktalets reciprok.
x^{2}+\left(-\frac{\frac{1}{2}}{\frac{5}{4}}\right)x=\frac{4225}{\frac{5}{4}}
Division med \frac{5}{4} tar ut multiplikationen med \frac{5}{4}.
x^{2}-\frac{2}{5}x=\frac{4225}{\frac{5}{4}}
Dela -\frac{1}{2} med \frac{5}{4} genom att multiplicera -\frac{1}{2} med reciproken till \frac{5}{4}.
x^{2}-\frac{2}{5}x=3380
Dela 4225 med \frac{5}{4} genom att multiplicera 4225 med reciproken till \frac{5}{4}.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=3380+\left(-\frac{1}{5}\right)^{2}
Dividera -\frac{2}{5}, koefficienten för termen x, med 2 för att få -\frac{1}{5}. Addera sedan kvadraten av -\frac{1}{5} till båda ekvationsleden. Det här steget gör ekvationens vänstra sida till en jämn kvadrat.
x^{2}-\frac{2}{5}x+\frac{1}{25}=3380+\frac{1}{25}
Kvadrera -\frac{1}{5} genom att kvadrera både täljaren och nämnaren i bråktalet.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{84501}{25}
Addera 3380 till \frac{1}{25}.
\left(x-\frac{1}{5}\right)^{2}=\frac{84501}{25}
Faktorisera x^{2}-\frac{2}{5}x+\frac{1}{25}. I allmänhet kan den alltid faktoriseras som \left(x+\frac{b}{2}\right)^{2} när x^{2}+bx+c är en perfekt kvadrat.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{84501}{25}}
Dra kvadratroten ur båda ekvationsled.
x-\frac{1}{5}=\frac{3\sqrt{9389}}{5} x-\frac{1}{5}=-\frac{3\sqrt{9389}}{5}
Förenkla.
x=\frac{3\sqrt{9389}+1}{5} x=\frac{1-3\sqrt{9389}}{5}
Addera \frac{1}{5} till båda ekvationsled.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}