Beräkna
\frac{3y}{2}
Utveckla
\frac{3y}{2}
Graf
Frågesport
Polynomial
\frac { y - \frac { y - 3 } { 3 } } { \frac { 4 } { 9 } + \frac { 2 } { 3 y } }
Aktie
Kopieras till Urklipp
\frac{\frac{3y}{3}-\frac{y-3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera y med \frac{3}{3}.
\frac{\frac{3y-\left(y-3\right)}{3}}{\frac{4}{9}+\frac{2}{3y}}
Eftersom \frac{3y}{3} och \frac{y-3}{3} har samma nämnare subtraherar du dem genom att subtrahera deras täljare.
\frac{\frac{3y-y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Gör multiplikationerna i 3y-\left(y-3\right).
\frac{\frac{2y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Kombinera lika termer i 3y-y+3.
\frac{\frac{2y+3}{3}}{\frac{4y}{9y}+\frac{2\times 3}{9y}}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Minsta gemensamma multipel av 9 och 3y är 9y. Multiplicera \frac{4}{9} med \frac{y}{y}. Multiplicera \frac{2}{3y} med \frac{3}{3}.
\frac{\frac{2y+3}{3}}{\frac{4y+2\times 3}{9y}}
Eftersom \frac{4y}{9y} och \frac{2\times 3}{9y} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{\frac{2y+3}{3}}{\frac{4y+6}{9y}}
Gör multiplikationerna i 4y+2\times 3.
\frac{\left(2y+3\right)\times 9y}{3\left(4y+6\right)}
Dela \frac{2y+3}{3} med \frac{4y+6}{9y} genom att multiplicera \frac{2y+3}{3} med reciproken till \frac{4y+6}{9y}.
\frac{3y\left(2y+3\right)}{4y+6}
Förkorta 3 i både täljare och nämnare.
\frac{3y\left(2y+3\right)}{2\left(2y+3\right)}
Faktorisera de uttryck som inte redan har faktoriserats.
\frac{3y}{2}
Förkorta 2y+3 i både täljare och nämnare.
\frac{\frac{3y}{3}-\frac{y-3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera y med \frac{3}{3}.
\frac{\frac{3y-\left(y-3\right)}{3}}{\frac{4}{9}+\frac{2}{3y}}
Eftersom \frac{3y}{3} och \frac{y-3}{3} har samma nämnare subtraherar du dem genom att subtrahera deras täljare.
\frac{\frac{3y-y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Gör multiplikationerna i 3y-\left(y-3\right).
\frac{\frac{2y+3}{3}}{\frac{4}{9}+\frac{2}{3y}}
Kombinera lika termer i 3y-y+3.
\frac{\frac{2y+3}{3}}{\frac{4y}{9y}+\frac{2\times 3}{9y}}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Minsta gemensamma multipel av 9 och 3y är 9y. Multiplicera \frac{4}{9} med \frac{y}{y}. Multiplicera \frac{2}{3y} med \frac{3}{3}.
\frac{\frac{2y+3}{3}}{\frac{4y+2\times 3}{9y}}
Eftersom \frac{4y}{9y} och \frac{2\times 3}{9y} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{\frac{2y+3}{3}}{\frac{4y+6}{9y}}
Gör multiplikationerna i 4y+2\times 3.
\frac{\left(2y+3\right)\times 9y}{3\left(4y+6\right)}
Dela \frac{2y+3}{3} med \frac{4y+6}{9y} genom att multiplicera \frac{2y+3}{3} med reciproken till \frac{4y+6}{9y}.
\frac{3y\left(2y+3\right)}{4y+6}
Förkorta 3 i både täljare och nämnare.
\frac{3y\left(2y+3\right)}{2\left(2y+3\right)}
Faktorisera de uttryck som inte redan har faktoriserats.
\frac{3y}{2}
Förkorta 2y+3 i både täljare och nämnare.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}