Beräkna
\frac{25x-15}{2}
Utveckla
\frac{25x-15}{2}
Graf
Aktie
Kopieras till Urklipp
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Subtrahera 5 från 3 för att få -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Dividera 4 med -2 för att få -2.
\frac{-6-4}{\frac{4}{3-5x}}
Multiplicera 3 och -2 för att få -6.
\frac{-10}{\frac{4}{3-5x}}
Subtrahera 4 från -6 för att få -10.
\frac{-10\left(3-5x\right)}{4}
Dela -10 med \frac{4}{3-5x} genom att multiplicera -10 med reciproken till \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Dividera -10\left(3-5x\right) med 4 för att få -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Använd den distributiva egenskapen för att multiplicera -\frac{5}{2} med 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Uttryck -\frac{5}{2}\times 3 som ett enda bråktal.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Multiplicera -5 och 3 för att få -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Bråktalet \frac{-15}{2} kan skrivas om som -\frac{15}{2} genom att extrahera minustecknet.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Uttryck -\frac{5}{2}\left(-5\right) som ett enda bråktal.
-\frac{15}{2}+\frac{25}{2}x
Multiplicera -5 och -5 för att få 25.
\frac{3\times \frac{4}{-2}-4}{\frac{4}{3-5x}}
Subtrahera 5 från 3 för att få -2.
\frac{3\left(-2\right)-4}{\frac{4}{3-5x}}
Dividera 4 med -2 för att få -2.
\frac{-6-4}{\frac{4}{3-5x}}
Multiplicera 3 och -2 för att få -6.
\frac{-10}{\frac{4}{3-5x}}
Subtrahera 4 från -6 för att få -10.
\frac{-10\left(3-5x\right)}{4}
Dela -10 med \frac{4}{3-5x} genom att multiplicera -10 med reciproken till \frac{4}{3-5x}.
-\frac{5}{2}\left(3-5x\right)
Dividera -10\left(3-5x\right) med 4 för att få -\frac{5}{2}\left(3-5x\right).
-\frac{5}{2}\times 3-\frac{5}{2}\left(-5\right)x
Använd den distributiva egenskapen för att multiplicera -\frac{5}{2} med 3-5x.
\frac{-5\times 3}{2}-\frac{5}{2}\left(-5\right)x
Uttryck -\frac{5}{2}\times 3 som ett enda bråktal.
\frac{-15}{2}-\frac{5}{2}\left(-5\right)x
Multiplicera -5 och 3 för att få -15.
-\frac{15}{2}-\frac{5}{2}\left(-5\right)x
Bråktalet \frac{-15}{2} kan skrivas om som -\frac{15}{2} genom att extrahera minustecknet.
-\frac{15}{2}+\frac{-5\left(-5\right)}{2}x
Uttryck -\frac{5}{2}\left(-5\right) som ett enda bråktal.
-\frac{15}{2}+\frac{25}{2}x
Multiplicera -5 och -5 för att få 25.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}