Hoppa till huvudinnehåll
Beräkna
Tick mark Image
Utveckla
Tick mark Image

Liknande problem från webbsökning

Aktie

\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Addera 2 och 6 för att få 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Addera 2 och 6 för att få 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera -a-1 med \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Eftersom \frac{2a+10}{a+1} och \frac{\left(-a-1\right)\left(a+1\right)}{a+1} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Gör multiplikationerna i 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Kombinera lika termer i 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Dela \frac{8-5a}{8+7a} med \frac{9-a^{2}}{a+1} genom att multiplicera \frac{8-5a}{8+7a} med reciproken till \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Faktorisera \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Minsta gemensamma multipel av \left(a-3\right)\left(-a-3\right)\left(7a+8\right) och a+3 är \left(a-3\right)\left(a+3\right)\left(7a+8\right). Multiplicera \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} med \frac{-1}{-1}. Multiplicera \frac{1}{a+3} med \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Eftersom \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} och \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Gör multiplikationerna i -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Kombinera lika termer i -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Utveckla \left(a-3\right)\left(a+3\right)\left(7a+8\right).
\frac{\frac{8-5a}{2+7a+6}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Addera 2 och 6 för att få 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}-a-1}+\frac{1}{a+3}
Addera 2 och 6 för att få 8.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera -a-1 med \frac{a+1}{a+1}.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}
Eftersom \frac{2a+10}{a+1} och \frac{\left(-a-1\right)\left(a+1\right)}{a+1} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{\frac{8-5a}{8+7a}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}
Gör multiplikationerna i 2a+10+\left(-a-1\right)\left(a+1\right).
\frac{\frac{8-5a}{8+7a}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}
Kombinera lika termer i 2a+10-a^{2}-a-a-1.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(8+7a\right)\left(9-a^{2}\right)}+\frac{1}{a+3}
Dela \frac{8-5a}{8+7a} med \frac{9-a^{2}}{a+1} genom att multiplicera \frac{8-5a}{8+7a} med reciproken till \frac{9-a^{2}}{a+1}.
\frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)}+\frac{1}{a+3}
Faktorisera \left(8+7a\right)\left(9-a^{2}\right).
\frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}+\frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Minsta gemensamma multipel av \left(a-3\right)\left(-a-3\right)\left(7a+8\right) och a+3 är \left(a-3\right)\left(a+3\right)\left(7a+8\right). Multiplicera \frac{\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(7a+8\right)} med \frac{-1}{-1}. Multiplicera \frac{1}{a+3} med \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(7a+8\right)}.
\frac{-\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Eftersom \frac{-\left(8-5a\right)\left(a+1\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} och \frac{\left(a-3\right)\left(7a+8\right)}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{-8a-8+5a^{2}+5a+7a^{2}+8a-21a-24}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Gör multiplikationerna i -\left(8-5a\right)\left(a+1\right)+\left(a-3\right)\left(7a+8\right).
\frac{-16a-32+12a^{2}}{\left(a-3\right)\left(a+3\right)\left(7a+8\right)}
Kombinera lika termer i -8a-8+5a^{2}+5a+7a^{2}+8a-21a-24.
\frac{-16a-32+12a^{2}}{7a^{3}+8a^{2}-63a-72}
Utveckla \left(a-3\right)\left(a+3\right)\left(7a+8\right).