Beräkna
-\frac{2x^{2}}{3}
Derivera m.a.p. x
-\frac{4x}{3}
Graf
Aktie
Kopieras till Urklipp
\frac{1}{2}x^{2}\left(-\frac{4}{3}\right)
Multiplicera x och x för att få x^{2}.
\frac{1\left(-4\right)}{2\times 3}x^{2}
Multiplicera \frac{1}{2} med -\frac{4}{3} genom att multiplicera täljare med täljare och nämnare med nämnare.
\frac{-4}{6}x^{2}
Multiplicera i bråket \frac{1\left(-4\right)}{2\times 3}.
-\frac{2}{3}x^{2}
Minska bråktalet \frac{-4}{6} till de lägsta termerna genom att extrahera och eliminera 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2}x^{2}\left(-\frac{4}{3}\right))
Multiplicera x och x för att få x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1\left(-4\right)}{2\times 3}x^{2})
Multiplicera \frac{1}{2} med -\frac{4}{3} genom att multiplicera täljare med täljare och nämnare med nämnare.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-4}{6}x^{2})
Multiplicera i bråket \frac{1\left(-4\right)}{2\times 3}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2}{3}x^{2})
Minska bråktalet \frac{-4}{6} till de lägsta termerna genom att extrahera och eliminera 2.
2\left(-\frac{2}{3}\right)x^{2-1}
Derivatan av ax^{n} är nax^{n-1}.
-\frac{4}{3}x^{2-1}
Multiplicera 2 med -\frac{2}{3}.
-\frac{4}{3}x^{1}
Subtrahera 1 från 2.
-\frac{4}{3}x
För alla termer t, t^{1}=t.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}