Derivera m.a.p. x
6-\frac{3}{2x^{\frac{5}{2}}}
Beräkna
6x-2+\frac{1}{x^{\frac{3}{2}}}
Graf
Aktie
Kopieras till Urklipp
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}}{x^{2}}+\frac{\left(6x-2\right)x^{2}}{x^{2}})
Om du vill addera eller subtrahera uttryck expanderar du dem för att göra deras nämnare samma. Multiplicera 6x-2 med \frac{x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}+\left(6x-2\right)x^{2}}{x^{2}})
Eftersom \frac{\sqrt{x}}{x^{2}} och \frac{\left(6x-2\right)x^{2}}{x^{2}} har samma nämnare adderar du dem genom att addera deras täljare.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}+6x^{3}-2x^{2}}{x^{2}})
Gör multiplikationerna i \sqrt{x}+\left(6x-2\right)x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\sqrt{x}\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)}{x^{2}})
Faktorisera de uttryck som inte redan har faktoriserats i \frac{\sqrt{x}+6x^{3}-2x^{2}}{x^{2}}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1}{x^{\frac{3}{2}}})
Förkorta \sqrt{x} i både täljare och nämnare.
\frac{x^{\frac{3}{2}}\frac{\mathrm{d}}{\mathrm{d}x}(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1)-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{3}{2}})}{\left(x^{\frac{3}{2}}\right)^{2}}
För två differentierbara funktioner är derivatan av kvoten av de två funktionerna nämnaren multiplicerat med täljarens derivata minus täljaren multiplicerat med nämnarens derivata, allt dividerat med nämnaren i kvadrat.
\frac{x^{\frac{3}{2}}\left(\frac{5}{2}\times 6x^{\frac{5}{2}-1}+\frac{3}{2}\left(-2\right)x^{\frac{3}{2}-1}\right)-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\times \frac{3}{2}x^{\frac{3}{2}-1}}{\left(x^{\frac{3}{2}}\right)^{2}}
Derivatan av ett polynom är lika med summan av derivatorna av polynomets termer. Derivatan för en konstant term är 0. Derivatan av ax^{n} är nax^{n-1}.
\frac{x^{\frac{3}{2}}\left(15x^{\frac{3}{2}}-3\sqrt{x}\right)-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\times \frac{3}{2}\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{2}}
Förenkla.
\frac{x^{\frac{3}{2}}\times 15x^{\frac{3}{2}}+x^{\frac{3}{2}}\left(-3\right)\sqrt{x}-\left(6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1\right)\times \frac{3}{2}\sqrt{x}}{\left(x^{\frac{3}{2}}\right)^{2}}
Multiplicera x^{\frac{3}{2}} med 15x^{\frac{3}{2}}-3\sqrt{x}.
\frac{x^{\frac{3}{2}}\times 15x^{\frac{3}{2}}+x^{\frac{3}{2}}\left(-3\right)\sqrt{x}-\left(6x^{\frac{5}{2}}\times \frac{3}{2}\sqrt{x}-2x^{\frac{3}{2}}\times \frac{3}{2}\sqrt{x}+\frac{3}{2}\sqrt{x}\right)}{\left(x^{\frac{3}{2}}\right)^{2}}
Multiplicera 6x^{\frac{5}{2}}-2x^{\frac{3}{2}}+1 med \frac{3}{2}\sqrt{x}.
\frac{15x^{\frac{3+3}{2}}-3x^{\frac{3+1}{2}}-\left(6\times \frac{3}{2}x^{\frac{5+1}{2}}-2\times \frac{3}{2}x^{\frac{3+1}{2}}+\frac{3}{2}\sqrt{x}\right)}{\left(x^{\frac{3}{2}}\right)^{2}}
Du multiplicerar potenser med samma bas genom att addera deras exponenter.
\frac{15x^{3}-3x^{2}-\left(9x^{3}-3x^{2}+\frac{3}{2}\sqrt{x}\right)}{\left(x^{\frac{3}{2}}\right)^{2}}
Förenkla.
\frac{6x^{3}-\frac{3}{2}x^{\frac{3}{2}}}{\left(x^{\frac{3}{2}}\right)^{2}}
Slå ihop lika termer.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}