Beräkna
\frac{5\sqrt{3}+5\sqrt{7}-\sqrt{21}-25}{18}\approx -0,427420283
Aktie
Kopieras till Urklipp
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Rationalisera nämnaren i \frac{\sqrt{3}-5}{\sqrt{7}+5} genom att multiplicera täljare och nämnare med \sqrt{7}-5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Överväg \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Multiplikation kan transformeras till differens av kvadrater med regeln: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{7-25}
Kvadrera \sqrt{7}. Kvadrera 5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{-18}
Subtrahera 25 från 7 för att få -18.
\frac{\sqrt{3}\sqrt{7}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Använd den distributiva egenskapen genom att multiplicera varje term av \sqrt{3}-5 med varje term av \sqrt{7}-5.
\frac{\sqrt{21}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Om du vill multiplicera \sqrt{3} och \sqrt{7} multiplicerar du numren under kvadratroten.
\frac{-\sqrt{21}+5\sqrt{3}+5\sqrt{7}-25}{18}
Multiplicera både täljaren och nämnaren med -1.
Exempel
Kvadratisk ekvation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometri
4 \sin \theta \cos \theta = 2 \sin \theta
Linjär ekvation
y = 3x + 4
Aritmetik
699 * 533
Matris
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtidig ekvation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiering
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Gränser
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}