Gjej v (complex solution)
\left\{\begin{matrix}v=\frac{z}{u\left(u+1\right)}\text{, }&u\neq -1\text{ and }u\neq 0\\v\in \mathrm{C}\text{, }&\left(u=0\text{ or }u=-1\right)\text{ and }z=0\end{matrix}\right.
Gjej v
\left\{\begin{matrix}v=\frac{z}{u\left(u+1\right)}\text{, }&u\neq -1\text{ and }u\neq 0\\v\in \mathrm{R}\text{, }&\left(u=0\text{ or }u=-1\right)\text{ and }z=0\end{matrix}\right.
Gjej u (complex solution)
\left\{\begin{matrix}u=-\frac{\sqrt{v\left(4z+v\right)}+v}{2v}\text{; }u=-\frac{-\sqrt{v\left(4z+v\right)}+v}{2v}\text{, }&v\neq 0\\u\in \mathrm{C}\text{, }&v=0\text{ and }z=0\end{matrix}\right.
Gjej u
\left\{\begin{matrix}u=-\frac{\sqrt{v\left(4z+v\right)}+v}{2v}\text{; }u=-\frac{-\sqrt{v\left(4z+v\right)}+v}{2v}\text{, }&\left(z\leq -\frac{v}{4}\text{ and }v<0\right)\text{ or }\left(z\geq -\frac{v}{4}\text{ and }v>0\right)\text{ or }\left(v\neq 0\text{ and }z=-\frac{v}{4}\right)\\u\in \mathrm{R}\text{, }&v=0\text{ and }z=0\end{matrix}\right.
Share
Kopjuar në clipboard
u^{2}v+uv=z
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
\left(u^{2}+u\right)v=z
Kombino të gjitha kufizat që përmbajnë v.
\frac{\left(u^{2}+u\right)v}{u^{2}+u}=\frac{z}{u^{2}+u}
Pjesëto të dyja anët me u^{2}+u.
v=\frac{z}{u^{2}+u}
Pjesëtimi me u^{2}+u zhbën shumëzimin me u^{2}+u.
v=\frac{z}{u\left(u+1\right)}
Pjesëto z me u^{2}+u.
u^{2}v+uv=z
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
\left(u^{2}+u\right)v=z
Kombino të gjitha kufizat që përmbajnë v.
\frac{\left(u^{2}+u\right)v}{u^{2}+u}=\frac{z}{u^{2}+u}
Pjesëto të dyja anët me u^{2}+u.
v=\frac{z}{u^{2}+u}
Pjesëtimi me u^{2}+u zhbën shumëzimin me u^{2}+u.
v=\frac{z}{u\left(u+1\right)}
Pjesëto z me u^{2}+u.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}