Gjej n (complex solution)
\left\{\begin{matrix}n=\frac{2i\pi n_{1}}{\ln(x)}+\log_{x}\left(5+y-4x\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 4x-5\text{ and }x\neq 1\text{ and }x\neq 0\\n\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=-5\right)\text{ or }\left(x=1\text{ and }y=0\right)\end{matrix}\right.
Gjej n
\left\{\begin{matrix}n=\log_{x}\left(5+y-4x\right)\text{, }&y>-\left(5-4x\right)\text{ and }x\neq 1\text{ and }x>0\\n\in \mathrm{R}\text{, }&\left(x=1\text{ and }y=0\right)\text{ or }\left(x=-1\text{ and }y=-10\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\right)\\n>0\text{, }&x=0\text{ and }y=-5\end{matrix}\right.
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}