Gjej x (complex solution)
x=-\frac{\sqrt{y^{2}\left(4-y^{2}\right)}}{2}
x=\frac{\sqrt{y^{2}\left(4-y^{2}\right)}}{2}\text{, }|-arg(-y)+arg(-\sqrt{x+1}+\sqrt{1-x})|<\pi \text{ and }|arg(-\sqrt{y^{4}-4y^{2}+4})-arg(\frac{y^{2}}{2}-1)|<\pi
Gjej x
\left\{\begin{matrix}x=\frac{y\sqrt{4-y^{2}}}{2}\text{, }&\left(y\leq 0\text{ and }\frac{-\sqrt{2y\sqrt{4-y^{2}}+4}+\sqrt{-2y\sqrt{4-y^{2}}+4}}{2}\geq 0\text{ and }y\geq -\sqrt{2}\text{ and }-y\sqrt{4-y^{2}}\leq 2\right)\text{ or }\left(y\geq 0\text{ and }\frac{-\sqrt{2y\sqrt{4-y^{2}}+4}+\sqrt{-2y\sqrt{4-y^{2}}+4}}{2}\leq 0\text{ and }y\leq \sqrt{2}\text{ and }y\sqrt{4-y^{2}}\leq 2\right)\text{ or }|y|=\sqrt{2}\\x=-\frac{y\sqrt{4-y^{2}}}{2}\text{, }&\left(y\leq 0\text{ and }\frac{\sqrt{2y\sqrt{4-y^{2}}+4}-\sqrt{-2y\sqrt{4-y^{2}}+4}}{2}\geq 0\text{ and }y\geq -\sqrt{2}\text{ and }-y\sqrt{4-y^{2}}\leq 2\right)\text{ or }\left(y\geq 0\text{ and }\frac{\sqrt{2y\sqrt{4-y^{2}}+4}-\sqrt{-2y\sqrt{4-y^{2}}+4}}{2}\leq 0\text{ and }y\leq \sqrt{2}\text{ and }y\sqrt{4-y^{2}}\leq 2\right)\end{matrix}\right.
Gjej y
y=\sqrt{x+1}-\sqrt{1-x}
|x|\leq 1
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}