Gjej y, x
x=18
y=6
Grafiku
Share
Kopjuar në clipboard
y-\frac{1}{3}x=0
Merr parasysh ekuacionin e parë. Zbrit \frac{1}{3}x nga të dyja anët.
y+3x=60
Merr parasysh ekuacionin e dytë. Shto 3x në të dyja anët.
y-\frac{1}{3}x=0,y+3x=60
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
y-\frac{1}{3}x=0
Zgjidh njërin prej ekuacioneve dhe gjej y duke veçuar y në anën e majtë të shenjës së barazimit.
y=\frac{1}{3}x
Mblidh \frac{x}{3} në të dyja anët e ekuacionit.
\frac{1}{3}x+3x=60
Zëvendëso y me \frac{x}{3} në ekuacionin tjetër, y+3x=60.
\frac{10}{3}x=60
Mblidh \frac{x}{3} me 3x.
x=18
Pjesëto të dyja anët e ekuacionit me \frac{10}{3}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
y=\frac{1}{3}\times 18
Zëvendëso x me 18 në y=\frac{1}{3}x. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh y menjëherë.
y=6
Shumëzo \frac{1}{3} herë 18.
y=6,x=18
Sistemi është zgjidhur tani.
y-\frac{1}{3}x=0
Merr parasysh ekuacionin e parë. Zbrit \frac{1}{3}x nga të dyja anët.
y+3x=60
Merr parasysh ekuacionin e dytë. Shto 3x në të dyja anët.
y-\frac{1}{3}x=0,y+3x=60
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\60\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{3}\\1&3\end{matrix}\right))\left(\begin{matrix}0\\60\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-\frac{1}{3}\right)}&-\frac{-\frac{1}{3}}{3-\left(-\frac{1}{3}\right)}\\-\frac{1}{3-\left(-\frac{1}{3}\right)}&\frac{1}{3-\left(-\frac{1}{3}\right)}\end{matrix}\right)\left(\begin{matrix}0\\60\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\-\frac{3}{10}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}0\\60\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 60\\\frac{3}{10}\times 60\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\18\end{matrix}\right)
Bëj veprimet.
y=6,x=18
Nxirr elementet e matricës y dhe x.
y-\frac{1}{3}x=0
Merr parasysh ekuacionin e parë. Zbrit \frac{1}{3}x nga të dyja anët.
y+3x=60
Merr parasysh ekuacionin e dytë. Shto 3x në të dyja anët.
y-\frac{1}{3}x=0,y+3x=60
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
y-y-\frac{1}{3}x-3x=-60
Zbrit y+3x=60 nga y-\frac{1}{3}x=0 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-\frac{1}{3}x-3x=-60
Mblidh y me -y. Shprehjet y dhe -y thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-\frac{10}{3}x=-60
Mblidh -\frac{x}{3} me -3x.
x=18
Pjesëto të dyja anët e ekuacionit me -\frac{10}{3}, që është njëlloj sikur t'i shumëzosh të dyja anët me të anasjelltën e thyesës.
y+3\times 18=60
Zëvendëso x me 18 në y+3x=60. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh y menjëherë.
y+54=60
Shumëzo 3 herë 18.
y=6
Zbrit 54 nga të dyja anët e ekuacionit.
y=6,x=18
Sistemi është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}