Gjej x
\left\{\begin{matrix}x\in [-\frac{\sqrt{3x_{1}+1}+1}{x_{1}},\infty)\cup (-\infty,\frac{\sqrt{3x_{1}+1}-1}{x_{1}}]\text{, }&x_{1}\geq -\frac{1}{3}\text{ and }x_{1}<0\\x\in [-\frac{\sqrt{3x_{1}+1}+1}{x_{1}},\frac{\sqrt{3x_{1}+1}-1}{x_{1}}]\text{, }&x_{1}=-\frac{1}{3}\text{ or }x_{1}>0\\x\leq \frac{3}{2}\text{, }&x_{1}\geq -\frac{1}{3}\text{ and }x_{1}\leq 0\\x\in \mathrm{R}\text{, }&x_{1}\leq -\frac{1}{3}\end{matrix}\right.
Gjej x_1
x_{1}\leq -\frac{2x-3}{x^{2}}
x\neq 0
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}