Faktorizo
\left(x-\left(75-3\sqrt{559}\right)\right)\left(x-\left(3\sqrt{559}+75\right)\right)
Vlerëso
x^{2}-150x+594
Grafiku
Share
Kopjuar në clipboard
x^{2}-150x+594=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\times 594}}{2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-150\right)±\sqrt{22500-4\times 594}}{2}
Ngri në fuqi të dytë -150.
x=\frac{-\left(-150\right)±\sqrt{22500-2376}}{2}
Shumëzo -4 herë 594.
x=\frac{-\left(-150\right)±\sqrt{20124}}{2}
Mblidh 22500 me -2376.
x=\frac{-\left(-150\right)±6\sqrt{559}}{2}
Gjej rrënjën katrore të 20124.
x=\frac{150±6\sqrt{559}}{2}
E kundërta e -150 është 150.
x=\frac{6\sqrt{559}+150}{2}
Tani zgjidhe ekuacionin x=\frac{150±6\sqrt{559}}{2} kur ± është plus. Mblidh 150 me 6\sqrt{559}.
x=3\sqrt{559}+75
Pjesëto 150+6\sqrt{559} me 2.
x=\frac{150-6\sqrt{559}}{2}
Tani zgjidhe ekuacionin x=\frac{150±6\sqrt{559}}{2} kur ± është minus. Zbrit 6\sqrt{559} nga 150.
x=75-3\sqrt{559}
Pjesëto 150-6\sqrt{559} me 2.
x^{2}-150x+594=\left(x-\left(3\sqrt{559}+75\right)\right)\left(x-\left(75-3\sqrt{559}\right)\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso 75+3\sqrt{559} për x_{1} dhe 75-3\sqrt{559} për x_{2}.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}