Kaloni tek përmbajtja kryesore
Gjej x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x\left(x-10\right)=0
Faktorizo x.
x=0 x=10
Për të gjetur zgjidhjet e ekuacionit, zgjidh x=0 dhe x-10=0.
x^{2}-10x=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me -10 dhe c me 0 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±10}{2}
Gjej rrënjën katrore të \left(-10\right)^{2}.
x=\frac{10±10}{2}
E kundërta e -10 është 10.
x=\frac{20}{2}
Tani zgjidhe ekuacionin x=\frac{10±10}{2} kur ± është plus. Mblidh 10 me 10.
x=10
Pjesëto 20 me 2.
x=\frac{0}{2}
Tani zgjidhe ekuacionin x=\frac{10±10}{2} kur ± është minus. Zbrit 10 nga 10.
x=0
Pjesëto 0 me 2.
x=10 x=0
Ekuacioni është zgjidhur tani.
x^{2}-10x=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=\left(-5\right)^{2}
Pjesëto -10, koeficientin e kufizës x, me 2 për të marrë -5. Më pas mblidh katrorin e -5 në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-10x+25=25
Ngri në fuqi të dytë -5.
\left(x-5\right)^{2}=25
Faktori x^{2}-10x+25. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{25}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-5=5 x-5=-5
Thjeshto.
x=10 x=0
Mblidh 5 në të dyja anët e ekuacionit.