Gjej x
x=-4
x=-1
Grafiku
Share
Kopjuar në clipboard
xx+4=-5x
Ndryshorja x nuk mund të jetë e barabartë me 0 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me x.
x^{2}+4=-5x
Shumëzo x me x për të marrë x^{2}.
x^{2}+4+5x=0
Shto 5x në të dyja anët.
x^{2}+5x+4=0
Risistemo polinomin për ta vendosur në formën standarde. Renditi kufizat nga fuqia më e madhe tek ajo më e vogël.
a+b=5 ab=4
Për të zgjidhur ekuacionin, faktorizo x^{2}+5x+4 me anë të formulës x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,4 2,2
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është pozitive, a dhe b janë të dyja pozitive. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 4.
1+4=5 2+2=4
Llogarit shumën për çdo çift.
a=1 b=4
Zgjidhja është çifti që jep shumën 5.
\left(x+1\right)\left(x+4\right)
Rishkruaj shprehjen e faktorizuar \left(x+a\right)\left(x+b\right) duke përdorur vlerat e fituara.
x=-1 x=-4
Për të gjetur zgjidhjet e ekuacionit, zgjidh x+1=0 dhe x+4=0.
xx+4=-5x
Ndryshorja x nuk mund të jetë e barabartë me 0 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me x.
x^{2}+4=-5x
Shumëzo x me x për të marrë x^{2}.
x^{2}+4+5x=0
Shto 5x në të dyja anët.
x^{2}+5x+4=0
Risistemo polinomin për ta vendosur në formën standarde. Renditi kufizat nga fuqia më e madhe tek ajo më e vogël.
a+b=5 ab=1\times 4=4
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si x^{2}+ax+bx+4. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,4 2,2
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është pozitive, a dhe b janë të dyja pozitive. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 4.
1+4=5 2+2=4
Llogarit shumën për çdo çift.
a=1 b=4
Zgjidhja është çifti që jep shumën 5.
\left(x^{2}+x\right)+\left(4x+4\right)
Rishkruaj x^{2}+5x+4 si \left(x^{2}+x\right)+\left(4x+4\right).
x\left(x+1\right)+4\left(x+1\right)
Faktorizo x në grupin e parë dhe 4 në të dytin.
\left(x+1\right)\left(x+4\right)
Faktorizo pjesëtuesin e përbashkët x+1 duke përdorur vetinë e shpërndarjes.
x=-1 x=-4
Për të gjetur zgjidhjet e ekuacionit, zgjidh x+1=0 dhe x+4=0.
xx+4=-5x
Ndryshorja x nuk mund të jetë e barabartë me 0 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me x.
x^{2}+4=-5x
Shumëzo x me x për të marrë x^{2}.
x^{2}+4+5x=0
Shto 5x në të dyja anët.
x^{2}+5x+4=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-5±\sqrt{5^{2}-4\times 4}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me 5 dhe c me 4 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 4}}{2}
Ngri në fuqi të dytë 5.
x=\frac{-5±\sqrt{25-16}}{2}
Shumëzo -4 herë 4.
x=\frac{-5±\sqrt{9}}{2}
Mblidh 25 me -16.
x=\frac{-5±3}{2}
Gjej rrënjën katrore të 9.
x=-\frac{2}{2}
Tani zgjidhe ekuacionin x=\frac{-5±3}{2} kur ± është plus. Mblidh -5 me 3.
x=-1
Pjesëto -2 me 2.
x=-\frac{8}{2}
Tani zgjidhe ekuacionin x=\frac{-5±3}{2} kur ± është minus. Zbrit 3 nga -5.
x=-4
Pjesëto -8 me 2.
x=-1 x=-4
Ekuacioni është zgjidhur tani.
xx+4=-5x
Ndryshorja x nuk mund të jetë e barabartë me 0 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me x.
x^{2}+4=-5x
Shumëzo x me x për të marrë x^{2}.
x^{2}+4+5x=0
Shto 5x në të dyja anët.
x^{2}+5x=-4
Zbrit 4 nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-4+\left(\frac{5}{2}\right)^{2}
Pjesëto 5, koeficientin e kufizës x, me 2 për të marrë \frac{5}{2}. Më pas mblidh katrorin e \frac{5}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}+5x+\frac{25}{4}=-4+\frac{25}{4}
Ngri në fuqi të dytë \frac{5}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}+5x+\frac{25}{4}=\frac{9}{4}
Mblidh -4 me \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{9}{4}
Faktori x^{2}+5x+\frac{25}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x+\frac{5}{2}=\frac{3}{2} x+\frac{5}{2}=-\frac{3}{2}
Thjeshto.
x=-1 x=-4
Zbrit \frac{5}{2} nga të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}