Gjej w
w=10
w=0
Share
Kopjuar në clipboard
w^{2}-10w=0
Zbrit 10w nga të dyja anët.
w\left(w-10\right)=0
Faktorizo w.
w=0 w=10
Për të gjetur zgjidhjet e ekuacionit, zgjidh w=0 dhe w-10=0.
w^{2}-10w=0
Zbrit 10w nga të dyja anët.
w=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me -10 dhe c me 0 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-\left(-10\right)±10}{2}
Gjej rrënjën katrore të \left(-10\right)^{2}.
w=\frac{10±10}{2}
E kundërta e -10 është 10.
w=\frac{20}{2}
Tani zgjidhe ekuacionin w=\frac{10±10}{2} kur ± është plus. Mblidh 10 me 10.
w=10
Pjesëto 20 me 2.
w=\frac{0}{2}
Tani zgjidhe ekuacionin w=\frac{10±10}{2} kur ± është minus. Zbrit 10 nga 10.
w=0
Pjesëto 0 me 2.
w=10 w=0
Ekuacioni është zgjidhur tani.
w^{2}-10w=0
Zbrit 10w nga të dyja anët.
w^{2}-10w+\left(-5\right)^{2}=\left(-5\right)^{2}
Pjesëto -10, koeficientin e kufizës x, me 2 për të marrë -5. Më pas mblidh katrorin e -5 në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
w^{2}-10w+25=25
Ngri në fuqi të dytë -5.
\left(w-5\right)^{2}=25
Faktori w^{2}-10w+25. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-5\right)^{2}}=\sqrt{25}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
w-5=5 w-5=-5
Thjeshto.
w=10 w=0
Mblidh 5 në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}