Gjej x
x=-1
x=\frac{1}{2}=0.5
Grafiku
Share
Kopjuar në clipboard
2x^{2}+x-1=0
Zbrit 1 nga të dyja anët.
a+b=1 ab=2\left(-1\right)=-2
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si 2x^{2}+ax+bx-1. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
a=-1 b=2
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është pozitive, numri pozitiv ka vlerë absolute më të madhe se ai negativ. Vetëm një çift i tillë është zgjidhja e sistemit.
\left(2x^{2}-x\right)+\left(2x-1\right)
Rishkruaj 2x^{2}+x-1 si \left(2x^{2}-x\right)+\left(2x-1\right).
x\left(2x-1\right)+2x-1
Faktorizo x në 2x^{2}-x.
\left(2x-1\right)\left(x+1\right)
Faktorizo pjesëtuesin e përbashkët 2x-1 duke përdorur vetinë e shpërndarjes.
x=\frac{1}{2} x=-1
Për të gjetur zgjidhjet e ekuacionit, zgjidh 2x-1=0 dhe x+1=0.
2x^{2}+x=1
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
2x^{2}+x-1=1-1
Zbrit 1 nga të dyja anët e ekuacionit.
2x^{2}+x-1=0
Zbritja e 1 nga vetja e tij jep 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-1\right)}}{2\times 2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 2, b me 1 dhe c me -1 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-1\right)}}{2\times 2}
Ngri në fuqi të dytë 1.
x=\frac{-1±\sqrt{1-8\left(-1\right)}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-1±\sqrt{1+8}}{2\times 2}
Shumëzo -8 herë -1.
x=\frac{-1±\sqrt{9}}{2\times 2}
Mblidh 1 me 8.
x=\frac{-1±3}{2\times 2}
Gjej rrënjën katrore të 9.
x=\frac{-1±3}{4}
Shumëzo 2 herë 2.
x=\frac{2}{4}
Tani zgjidhe ekuacionin x=\frac{-1±3}{4} kur ± është plus. Mblidh -1 me 3.
x=\frac{1}{2}
Thjeshto thyesën \frac{2}{4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=-\frac{4}{4}
Tani zgjidhe ekuacionin x=\frac{-1±3}{4} kur ± është minus. Zbrit 3 nga -1.
x=-1
Pjesëto -4 me 4.
x=\frac{1}{2} x=-1
Ekuacioni është zgjidhur tani.
2x^{2}+x=1
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{1}{2}
Pjesëto të dyja anët me 2.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Pjesëtimi me 2 zhbën shumëzimin me 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Pjesëto \frac{1}{2}, koeficientin e kufizës x, me 2 për të marrë \frac{1}{4}. Më pas mblidh katrorin e \frac{1}{4} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Ngri në fuqi të dytë \frac{1}{4} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Mblidh \frac{1}{2} me \frac{1}{16} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Faktori x^{2}+\frac{1}{2}x+\frac{1}{16}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Thjeshto.
x=\frac{1}{2} x=-1
Zbrit \frac{1}{4} nga të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}