Kaloni tek përmbajtja kryesore
Faktorizo
Tick mark Image
Vlerëso
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

-x^{2}-3x+1=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-1\right)}}{2\left(-1\right)}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-1\right)}}{2\left(-1\right)}
Ngri në fuqi të dytë -3.
x=\frac{-\left(-3\right)±\sqrt{9+4}}{2\left(-1\right)}
Shumëzo -4 herë -1.
x=\frac{-\left(-3\right)±\sqrt{13}}{2\left(-1\right)}
Mblidh 9 me 4.
x=\frac{3±\sqrt{13}}{2\left(-1\right)}
E kundërta e -3 është 3.
x=\frac{3±\sqrt{13}}{-2}
Shumëzo 2 herë -1.
x=\frac{\sqrt{13}+3}{-2}
Tani zgjidhe ekuacionin x=\frac{3±\sqrt{13}}{-2} kur ± është plus. Mblidh 3 me \sqrt{13}.
x=\frac{-\sqrt{13}-3}{2}
Pjesëto 3+\sqrt{13} me -2.
x=\frac{3-\sqrt{13}}{-2}
Tani zgjidhe ekuacionin x=\frac{3±\sqrt{13}}{-2} kur ± është minus. Zbrit \sqrt{13} nga 3.
x=\frac{\sqrt{13}-3}{2}
Pjesëto 3-\sqrt{13} me -2.
-x^{2}-3x+1=-\left(x-\frac{-\sqrt{13}-3}{2}\right)\left(x-\frac{\sqrt{13}-3}{2}\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso \frac{-3-\sqrt{13}}{2} për x_{1} dhe \frac{-3+\sqrt{13}}{2} për x_{2}.