Gjej f
f=\frac{1-x}{x\left(x+1\right)}
x\neq -1\text{ and }x\neq 0
Gjej x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{f^{2}+6f+1}-f-1}{2f}\text{; }x=-\frac{\sqrt{f^{2}+6f+1}+f+1}{2f}\text{, }&f\neq 0\\x=1\text{, }&f=0\end{matrix}\right.
Gjej x
\left\{\begin{matrix}x=\frac{\sqrt{f^{2}+6f+1}-f-1}{2f}\text{; }x=-\frac{\sqrt{f^{2}+6f+1}+f+1}{2f}\text{, }&f\leq -2\sqrt{2}-3\text{ or }\left(f\neq 0\text{ and }f\geq 2\sqrt{2}-3\right)\\x=1\text{, }&f=0\end{matrix}\right.
Grafiku
Share
Kopjuar në clipboard
x-1=\left(-f\right)x\left(x+1\right)
Shumëzo të dyja anët e ekuacionit me x+1.
x-1=\left(-f\right)x^{2}+\left(-f\right)x
Përdor vetinë e shpërndarjes për të shumëzuar \left(-f\right)x me x+1.
\left(-f\right)x^{2}+\left(-f\right)x=x-1
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
-fx^{2}-fx=x-1
Rirendit kufizat.
\left(-x^{2}-x\right)f=x-1
Kombino të gjitha kufizat që përmbajnë f.
\frac{\left(-x^{2}-x\right)f}{-x^{2}-x}=\frac{x-1}{-x^{2}-x}
Pjesëto të dyja anët me -x^{2}-x.
f=\frac{x-1}{-x^{2}-x}
Pjesëtimi me -x^{2}-x zhbën shumëzimin me -x^{2}-x.
f=\frac{x-1}{-x\left(x+1\right)}
Pjesëto x-1 me -x^{2}-x.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}