Kaloni tek përmbajtja kryesore
Gjej x, y (complex solution)
Tick mark Image
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
bx+cy=a+b
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
bx=\left(-c\right)y+a+b
Zbrit cy nga të dyja anët e ekuacionit.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
Pjesëto të dyja anët me b.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
Shumëzo \frac{1}{b} herë -cy+a+b.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Zëvendëso x me \frac{-cy+a+b}{b} në ekuacionin tjetër, \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Shumëzo a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) herë \frac{-cy+a+b}{b}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
Mblidh -\frac{2acy}{\left(a-b\right)\left(a+b\right)} me \frac{2cay}{\left(b-a\right)\left(b+a\right)}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
Zbrit \frac{2a}{a-b} nga të dyja anët e ekuacionit.
y=\frac{b}{c}
Pjesëto të dyja anët me \frac{4ca}{\left(b-a\right)\left(a+b\right)}.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
Zëvendëso y me \frac{b}{c} në x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=-1+\frac{a+b}{b}
Shumëzo -\frac{c}{b} herë \frac{b}{c}.
x=\frac{a}{b}
Mblidh \frac{a+b}{b} me -1.
x=\frac{a}{b},y=\frac{b}{c}
Sistemi është zgjidhur tani.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
Bëj veprimet.
x=\frac{a}{b},y=\frac{b}{c}
Nxirr elementet e matricës x dhe y.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
Për ta bërë bx të barabartë me \frac{2abx}{\left(a-b\right)\left(a+b\right)}, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me b.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
Thjeshto.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Zbrit \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} nga \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Mblidh \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} me -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}. Shprehjet \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} dhe -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Mblidh \frac{2abcy}{\left(a-b\right)\left(a+b\right)} me -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
Mblidh \frac{2ab}{a-b} me -\frac{2ba}{a+b}.
y=\frac{b}{c}
Pjesëto të dyja anët me \frac{4bca}{\left(a-b\right)\left(a+b\right)}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
Zëvendëso y me \frac{b}{c} në \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
Shumëzo c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) herë \frac{b}{c}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
Zbrit \frac{2ab}{\left(b-a\right)\left(b+a\right)} nga të dyja anët e ekuacionit.
x=\frac{a}{b}
Pjesëto të dyja anët me a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right).
x=\frac{a}{b},y=\frac{b}{c}
Sistemi është zgjidhur tani.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
bx+cy=a+b
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
bx=\left(-c\right)y+a+b
Zbrit cy nga të dyja anët e ekuacionit.
x=\frac{1}{b}\left(\left(-c\right)y+a+b\right)
Pjesëto të dyja anët me b.
x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}
Shumëzo \frac{1}{b} herë -cy+a+b.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(\left(-\frac{c}{b}\right)y+\frac{a+b}{b}\right)+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Zëvendëso x me \frac{-cy+a+b}{b} në ekuacionin tjetër, \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}.
\left(-\frac{2ac}{\left(a-b\right)\left(a+b\right)}\right)y+\frac{2a}{a-b}+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Shumëzo a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) herë \frac{-cy+a+b}{b}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y+\frac{2a}{a-b}=\frac{2a}{a+b}
Mblidh -\frac{2acy}{\left(a-b\right)\left(a+b\right)} me \frac{2cay}{\left(b-a\right)\left(b+a\right)}.
\frac{4ac}{\left(b-a\right)\left(a+b\right)}y=-\frac{4ab}{a^{2}-b^{2}}
Zbrit \frac{2a}{a-b} nga të dyja anët e ekuacionit.
y=\frac{b}{c}
Pjesëto të dyja anët me \frac{4ca}{\left(b-a\right)\left(a+b\right)}.
x=\left(-\frac{c}{b}\right)\times \frac{b}{c}+\frac{a+b}{b}
Zëvendëso y me \frac{b}{c} në x=\left(-\frac{c}{b}\right)y+\frac{a+b}{b}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=-1+\frac{a+b}{b}
Shumëzo -\frac{c}{b} herë \frac{b}{c}.
x=\frac{a}{b}
Mblidh \frac{a+b}{b} me -1\text{, }|b|\neq |a|.
x=\frac{a}{b},y=\frac{b}{c}
Sistemi është zgjidhur tani.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}b&c\\-\frac{2ab}{\left(-a+b\right)\left(a+b\right)}&\frac{2ca}{\left(b-a\right)\left(b+a\right)}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}b&c\\\frac{2ab}{\left(a-b\right)\left(a+b\right)}&\frac{2ac}{\left(b-a\right)\left(a+b\right)}\end{matrix}\right))\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2ac}{\left(b-a\right)\left(a+b\right)\left(b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}\right)}&-\frac{c}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\\-\frac{\frac{2ab}{\left(a-b\right)\left(a+b\right)}}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}&\frac{b}{b\times \frac{2ac}{\left(b-a\right)\left(a+b\right)}-c\times \frac{2ab}{\left(a-b\right)\left(a+b\right)}}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}&\frac{a}{4b}-\frac{b}{4a}\\\frac{1}{2c}&\frac{\left(b-a\right)\left(a+b\right)}{4ac}\end{matrix}\right)\left(\begin{matrix}a+b\\\frac{2a}{a+b}\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2b}\left(a+b\right)+\left(\frac{a}{4b}-\frac{b}{4a}\right)\times \frac{2a}{a+b}\\\frac{1}{2c}\left(a+b\right)+\frac{\left(b-a\right)\left(a+b\right)}{4ac}\times \frac{2a}{a+b}\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{a}{b}\\\frac{b}{c}\end{matrix}\right)
Bëj veprimet.
x=\frac{a}{b},y=\frac{b}{c}
Nxirr elementet e matricës x dhe y.
bx+cy=a+b,\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)abx+\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)acy=\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)a\left(a+b\right),b\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+b\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=b\times \frac{2a}{a+b}
Për ta bërë bx të barabartë me \frac{2abx}{\left(a-b\right)\left(a+b\right)}, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right) dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me b.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b},\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b}
Thjeshto.
\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\left(-\frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}\right)x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Zbrit \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(b-a\right)\left(a+b\right)}y=\frac{2ab}{a+b} nga \frac{2ab^{2}}{\left(a-b\right)\left(a+b\right)}x+\frac{2abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b} duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
\frac{2abc}{\left(a-b\right)\left(a+b\right)}y+\left(-\frac{2abc}{\left(b-a\right)\left(a+b\right)}\right)y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Mblidh \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} me -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)}. Shprehjet \frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} dhe -\frac{2ab^{2}x}{\left(a-b\right)\left(a+b\right)} thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{2ab}{a-b}-\frac{2ab}{a+b}
Mblidh \frac{2abcy}{\left(a-b\right)\left(a+b\right)} me -\frac{2bcay}{\left(b-a\right)\left(b+a\right)}.
\frac{4abc}{\left(a-b\right)\left(a+b\right)}y=\frac{4ab^{2}}{\left(a-b\right)\left(a+b\right)}
Mblidh \frac{2ab}{a-b} me -\frac{2ba}{a+b}.
y=\frac{b}{c}
Pjesëto të dyja anët me \frac{4bca}{\left(a-b\right)\left(a+b\right)}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)c\times \frac{b}{c}=\frac{2a}{a+b}
Zëvendëso y me \frac{b}{c} në \left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\left(-\frac{1}{a+b}+\frac{1}{b-a}\right)cy=\frac{2a}{a+b}. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax+\frac{2ab}{\left(b-a\right)\left(a+b\right)}=\frac{2a}{a+b}
Shumëzo c\left(\left(b-a\right)^{-1}-\left(b+a\right)^{-1}\right) herë \frac{b}{c}.
\left(-\frac{1}{a+b}+\frac{1}{a-b}\right)ax=-\frac{2a^{2}}{\left(b-a\right)\left(a+b\right)}
Zbrit \frac{2ab}{\left(b-a\right)\left(b+a\right)} nga të dyja anët e ekuacionit.
x=\frac{a}{b}
Pjesëto të dyja anët me a\left(\left(a-b\right)^{-1}-\left(a+b\right)^{-1}\right).
x=\frac{a}{b},y=\frac{b}{c}
Sistemi është zgjidhur tani.