Gjej a
\left\{\begin{matrix}a=\frac{a_{1}d\left(n-1\right)}{n}\text{, }&n\neq 0\\a\in \mathrm{R}\text{, }&\left(a_{1}=0\text{ or }d=0\right)\text{ and }n=0\end{matrix}\right.
Gjej a_1
\left\{\begin{matrix}a_{1}=\frac{an}{d\left(n-1\right)}\text{, }&d\neq 0\text{ and }n\neq 1\\a_{1}\in \mathrm{R}\text{, }&\left(n=0\text{ or }a=0\right)\text{ and }\left(d=0\text{ or }n=1\right)\text{ and }\left(d=0\text{ or }a=0\right)\end{matrix}\right.
Share
Kopjuar në clipboard
an=\left(a_{1}n-a_{1}\right)d
Përdor vetinë e shpërndarjes për të shumëzuar a_{1} me n-1.
an=a_{1}nd-a_{1}d
Përdor vetinë e shpërndarjes për të shumëzuar a_{1}n-a_{1} me d.
na=a_{1}dn-a_{1}d
Ekuacioni është në formën standarde.
\frac{na}{n}=\frac{a_{1}d\left(n-1\right)}{n}
Pjesëto të dyja anët me n.
a=\frac{a_{1}d\left(n-1\right)}{n}
Pjesëtimi me n zhbën shumëzimin me n.
an=\left(a_{1}n-a_{1}\right)d
Përdor vetinë e shpërndarjes për të shumëzuar a_{1} me n-1.
an=a_{1}nd-a_{1}d
Përdor vetinë e shpërndarjes për të shumëzuar a_{1}n-a_{1} me d.
a_{1}nd-a_{1}d=an
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
\left(nd-d\right)a_{1}=an
Kombino të gjitha kufizat që përmbajnë a_{1}.
\left(dn-d\right)a_{1}=an
Ekuacioni është në formën standarde.
\frac{\left(dn-d\right)a_{1}}{dn-d}=\frac{an}{dn-d}
Pjesëto të dyja anët me dn-d.
a_{1}=\frac{an}{dn-d}
Pjesëtimi me dn-d zhbën shumëzimin me dn-d.
a_{1}=\frac{an}{d\left(n-1\right)}
Pjesëto an me dn-d.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}