Kaloni tek përmbajtja kryesore
Gjej x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x\left(5x-25\right)=0
Faktorizo x.
x=0 x=5
Për të gjetur zgjidhjet e ekuacionit, zgjidh x=0 dhe 5x-25=0.
5x^{2}-25x=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}}}{2\times 5}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 5, b me -25 dhe c me 0 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±25}{2\times 5}
Gjej rrënjën katrore të \left(-25\right)^{2}.
x=\frac{25±25}{2\times 5}
E kundërta e -25 është 25.
x=\frac{25±25}{10}
Shumëzo 2 herë 5.
x=\frac{50}{10}
Tani zgjidhe ekuacionin x=\frac{25±25}{10} kur ± është plus. Mblidh 25 me 25.
x=5
Pjesëto 50 me 10.
x=\frac{0}{10}
Tani zgjidhe ekuacionin x=\frac{25±25}{10} kur ± është minus. Zbrit 25 nga 25.
x=0
Pjesëto 0 me 10.
x=5 x=0
Ekuacioni është zgjidhur tani.
5x^{2}-25x=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
\frac{5x^{2}-25x}{5}=\frac{0}{5}
Pjesëto të dyja anët me 5.
x^{2}+\left(-\frac{25}{5}\right)x=\frac{0}{5}
Pjesëtimi me 5 zhbën shumëzimin me 5.
x^{2}-5x=\frac{0}{5}
Pjesëto -25 me 5.
x^{2}-5x=0
Pjesëto 0 me 5.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
Pjesëto -5, koeficientin e kufizës x, me 2 për të marrë -\frac{5}{2}. Më pas mblidh katrorin e -\frac{5}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Ngri në fuqi të dytë -\frac{5}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
Faktori x^{2}-5x+\frac{25}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Thjeshto.
x=5 x=0
Mblidh \frac{5}{2} në të dyja anët e ekuacionit.