Gjej a
\left\{\begin{matrix}\\a=-2m\left(12m-25\right)\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Gjej m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m=\frac{-\sqrt{625-24a}+25}{24}\text{; }m=\frac{\sqrt{625-24a}+25}{24}\text{, }&a\leq \frac{625}{24}\end{matrix}\right.
Kuiz
Linear Equation
5 probleme të ngjashme me:
450 mm ^ { 2 } = ( \frac { 1 } { 2 } ) 18 mm ( a + 24 mm )
Share
Kopjuar në clipboard
450m^{3}=\frac{1}{2}\times 18mm\left(a+24mm\right)
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre. Mblidh 1 me 2 për të marrë 3.
450m^{3}=\frac{1}{2}\times 18mm\left(a+24m^{2}\right)
Shumëzo m me m për të marrë m^{2}.
450m^{3}=\frac{1}{2}\times 18m^{2}\left(a+24m^{2}\right)
Shumëzo m me m për të marrë m^{2}.
450m^{3}=9m^{2}\left(a+24m^{2}\right)
Shumëzo \frac{1}{2} me 18 për të marrë 9.
450m^{3}=9m^{2}a+216m^{4}
Përdor vetinë e shpërndarjes për të shumëzuar 9m^{2} me a+24m^{2}.
9m^{2}a+216m^{4}=450m^{3}
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
9m^{2}a=450m^{3}-216m^{4}
Zbrit 216m^{4} nga të dyja anët.
\frac{9m^{2}a}{9m^{2}}=\frac{18\left(25-12m\right)m^{3}}{9m^{2}}
Pjesëto të dyja anët me 9m^{2}.
a=\frac{18\left(25-12m\right)m^{3}}{9m^{2}}
Pjesëtimi me 9m^{2} zhbën shumëzimin me 9m^{2}.
a=2m\left(25-12m\right)
Pjesëto 18\left(25-12m\right)m^{3} me 9m^{2}.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}