Faktorizo
4\left(x^{2}-3x+9\right)
Vlerëso
4\left(x^{2}-3x+9\right)
Grafiku
Share
Kopjuar në clipboard
4\left(x^{2}-3x+9\right)
Faktorizo 4. Polinomi x^{2}-3x+9 nuk është faktorizuar pasi nuk ka asnjë rrënjë racionale.
4x^{2}-12x+36=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 36}}{2\times 4}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 36}}{2\times 4}
Ngri në fuqi të dytë -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 36}}{2\times 4}
Shumëzo -4 herë 4.
x=\frac{-\left(-12\right)±\sqrt{144-576}}{2\times 4}
Shumëzo -16 herë 36.
x=\frac{-\left(-12\right)±\sqrt{-432}}{2\times 4}
Mblidh 144 me -576.
4x^{2}-12x+36
Meqë rrënja katrore e një numri negativ nuk përcaktohet në fushën reale, nuk ka zgjidhje. Polinomi i shkallës së dytë s'mund të faktorizohet.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}