Gjej x (complex solution)
x=-\frac{1}{2}+\sqrt{2}i\approx -0.5+1.414213562i
x=-\sqrt{2}i-\frac{1}{2}\approx -0.5-1.414213562i
Grafiku
Share
Kopjuar në clipboard
4x^{2}+4x+9=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-4±\sqrt{4^{2}-4\times 4\times 9}}{2\times 4}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 4, b me 4 dhe c me 9 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 4\times 9}}{2\times 4}
Ngri në fuqi të dytë 4.
x=\frac{-4±\sqrt{16-16\times 9}}{2\times 4}
Shumëzo -4 herë 4.
x=\frac{-4±\sqrt{16-144}}{2\times 4}
Shumëzo -16 herë 9.
x=\frac{-4±\sqrt{-128}}{2\times 4}
Mblidh 16 me -144.
x=\frac{-4±8\sqrt{2}i}{2\times 4}
Gjej rrënjën katrore të -128.
x=\frac{-4±8\sqrt{2}i}{8}
Shumëzo 2 herë 4.
x=\frac{-4+2\times 2^{\frac{5}{2}}i}{8}
Tani zgjidhe ekuacionin x=\frac{-4±8\sqrt{2}i}{8} kur ± është plus. Mblidh -4 me 8i\sqrt{2}.
x=-\frac{1}{2}+\sqrt{2}i
Pjesëto -4+2i\times 2^{\frac{5}{2}} me 8.
x=\frac{-2\times 2^{\frac{5}{2}}i-4}{8}
Tani zgjidhe ekuacionin x=\frac{-4±8\sqrt{2}i}{8} kur ± është minus. Zbrit 8i\sqrt{2} nga -4.
x=-\sqrt{2}i-\frac{1}{2}
Pjesëto -4-2i\times 2^{\frac{5}{2}} me 8.
x=-\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{1}{2}
Ekuacioni është zgjidhur tani.
4x^{2}+4x+9=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
4x^{2}+4x+9-9=-9
Zbrit 9 nga të dyja anët e ekuacionit.
4x^{2}+4x=-9
Zbritja e 9 nga vetja e tij jep 0.
\frac{4x^{2}+4x}{4}=-\frac{9}{4}
Pjesëto të dyja anët me 4.
x^{2}+\frac{4}{4}x=-\frac{9}{4}
Pjesëtimi me 4 zhbën shumëzimin me 4.
x^{2}+x=-\frac{9}{4}
Pjesëto 4 me 4.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{1}{2}\right)^{2}
Pjesëto 1, koeficientin e kufizës x, me 2 për të marrë \frac{1}{2}. Më pas mblidh katrorin e \frac{1}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}+x+\frac{1}{4}=\frac{-9+1}{4}
Ngri në fuqi të dytë \frac{1}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}+x+\frac{1}{4}=-2
Mblidh -\frac{9}{4} me \frac{1}{4} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x+\frac{1}{2}\right)^{2}=-2
Faktori x^{2}+x+\frac{1}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-2}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x+\frac{1}{2}=\sqrt{2}i x+\frac{1}{2}=-\sqrt{2}i
Thjeshto.
x=-\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{1}{2}
Zbrit \frac{1}{2} nga të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}