Gjej x
x=-\frac{2}{3}\approx -0.666666667
x=1
Grafiku
Share
Kopjuar në clipboard
a+b=-1 ab=3\left(-2\right)=-6
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si 3x^{2}+ax+bx-2. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,-6 2,-3
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është negative, numri negativ ka vlerë absolute më të madhe se ai pozitiv. Listo të gjitha këto çifte numrash të plotë që japin prodhimin -6.
1-6=-5 2-3=-1
Llogarit shumën për çdo çift.
a=-3 b=2
Zgjidhja është çifti që jep shumën -1.
\left(3x^{2}-3x\right)+\left(2x-2\right)
Rishkruaj 3x^{2}-x-2 si \left(3x^{2}-3x\right)+\left(2x-2\right).
3x\left(x-1\right)+2\left(x-1\right)
Faktorizo 3x në grupin e parë dhe 2 në të dytin.
\left(x-1\right)\left(3x+2\right)
Faktorizo pjesëtuesin e përbashkët x-1 duke përdorur vetinë e shpërndarjes.
x=1 x=-\frac{2}{3}
Për të gjetur zgjidhjet e ekuacionit, zgjidh x-1=0 dhe 3x+2=0.
3x^{2}-x-2=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 3, b me -1 dhe c me -2 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
Shumëzo -4 herë 3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
Shumëzo -12 herë -2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
Mblidh 1 me 24.
x=\frac{-\left(-1\right)±5}{2\times 3}
Gjej rrënjën katrore të 25.
x=\frac{1±5}{2\times 3}
E kundërta e -1 është 1.
x=\frac{1±5}{6}
Shumëzo 2 herë 3.
x=\frac{6}{6}
Tani zgjidhe ekuacionin x=\frac{1±5}{6} kur ± është plus. Mblidh 1 me 5.
x=1
Pjesëto 6 me 6.
x=-\frac{4}{6}
Tani zgjidhe ekuacionin x=\frac{1±5}{6} kur ± është minus. Zbrit 5 nga 1.
x=-\frac{2}{3}
Thjeshto thyesën \frac{-4}{6} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=1 x=-\frac{2}{3}
Ekuacioni është zgjidhur tani.
3x^{2}-x-2=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
3x^{2}-x-2-\left(-2\right)=-\left(-2\right)
Mblidh 2 në të dyja anët e ekuacionit.
3x^{2}-x=-\left(-2\right)
Zbritja e -2 nga vetja e tij jep 0.
3x^{2}-x=2
Zbrit -2 nga 0.
\frac{3x^{2}-x}{3}=\frac{2}{3}
Pjesëto të dyja anët me 3.
x^{2}-\frac{1}{3}x=\frac{2}{3}
Pjesëtimi me 3 zhbën shumëzimin me 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Pjesëto -\frac{1}{3}, koeficientin e kufizës x, me 2 për të marrë -\frac{1}{6}. Më pas mblidh katrorin e -\frac{1}{6} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Ngri në fuqi të dytë -\frac{1}{6} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Mblidh \frac{2}{3} me \frac{1}{36} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
Faktori x^{2}-\frac{1}{3}x+\frac{1}{36}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Thjeshto.
x=1 x=-\frac{2}{3}
Mblidh \frac{1}{6} në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}