Gjej y
y=\frac{\left(1-2x\right)^{\frac{2}{3}}+9}{27}
x\geq \frac{1}{2}
Gjej x (complex solution)
x=\frac{81\sqrt{3y-1}y-27\sqrt{3y-1}+1}{2}
|\frac{arg(3y-1)}{2}-arg(-\sqrt[3]{-\left(3y-1\right)^{\frac{3}{2}}})|<\frac{2\pi }{3}\text{ or }y=\frac{1}{3}
Gjej y (complex solution)
y = \frac{1}{3} = 0.3333333333333333
x = \frac{1}{2} = 0.5
Gjej x
x=\frac{81\sqrt{3y-1}y-27\sqrt{3y-1}+1}{2}
y\geq \frac{1}{3}
Grafiku
Share
Kopjuar në clipboard
3\sqrt{3y-1}+\sqrt[3]{1-2x}-\sqrt[3]{1-2x}=-\sqrt[3]{1-2x}
Zbrit \sqrt[3]{1-2x} nga të dyja anët e ekuacionit.
3\sqrt{3y-1}=-\sqrt[3]{1-2x}
Zbritja e \sqrt[3]{1-2x} nga vetja e tij jep 0.
\frac{3\sqrt{3y-1}}{3}=-\frac{\sqrt[3]{1-2x}}{3}
Pjesëto të dyja anët me 3.
\sqrt{3y-1}=-\frac{\sqrt[3]{1-2x}}{3}
Pjesëtimi me 3 zhbën shumëzimin me 3.
3y-1=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}
Ngri në fuqi të dytë të dyja anët e ekuacionit.
3y-1-\left(-1\right)=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Mblidh 1 në të dyja anët e ekuacionit.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}-\left(-1\right)
Zbritja e -1 nga vetja e tij jep 0.
3y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1
Zbrit -1 nga \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}.
\frac{3y}{3}=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Pjesëto të dyja anët me 3.
y=\frac{\frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1}{3}
Pjesëtimi me 3 zhbën shumëzimin me 3.
y=\frac{\left(1-2x\right)^{\frac{2}{3}}}{27}+\frac{1}{3}
Pjesëto \frac{\left(1-2x\right)^{\frac{2}{3}}}{9}+1 me 3.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}