Gjej x
x = \frac{\sqrt{177} + 11}{4} \approx 6.076033674
x=\frac{11-\sqrt{177}}{4}\approx -0.576033674
Grafiku
Share
Kopjuar në clipboard
2x^{2}-7x-2-4x=5
Zbrit 4x nga të dyja anët.
2x^{2}-11x-2=5
Kombino -7x dhe -4x për të marrë -11x.
2x^{2}-11x-2-5=0
Zbrit 5 nga të dyja anët.
2x^{2}-11x-7=0
Zbrit 5 nga -2 për të marrë -7.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 2, b me -11 dhe c me -7 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 2\left(-7\right)}}{2\times 2}
Ngri në fuqi të dytë -11.
x=\frac{-\left(-11\right)±\sqrt{121-8\left(-7\right)}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-\left(-11\right)±\sqrt{121+56}}{2\times 2}
Shumëzo -8 herë -7.
x=\frac{-\left(-11\right)±\sqrt{177}}{2\times 2}
Mblidh 121 me 56.
x=\frac{11±\sqrt{177}}{2\times 2}
E kundërta e -11 është 11.
x=\frac{11±\sqrt{177}}{4}
Shumëzo 2 herë 2.
x=\frac{\sqrt{177}+11}{4}
Tani zgjidhe ekuacionin x=\frac{11±\sqrt{177}}{4} kur ± është plus. Mblidh 11 me \sqrt{177}.
x=\frac{11-\sqrt{177}}{4}
Tani zgjidhe ekuacionin x=\frac{11±\sqrt{177}}{4} kur ± është minus. Zbrit \sqrt{177} nga 11.
x=\frac{\sqrt{177}+11}{4} x=\frac{11-\sqrt{177}}{4}
Ekuacioni është zgjidhur tani.
2x^{2}-7x-2-4x=5
Zbrit 4x nga të dyja anët.
2x^{2}-11x-2=5
Kombino -7x dhe -4x për të marrë -11x.
2x^{2}-11x=5+2
Shto 2 në të dyja anët.
2x^{2}-11x=7
Shto 5 dhe 2 për të marrë 7.
\frac{2x^{2}-11x}{2}=\frac{7}{2}
Pjesëto të dyja anët me 2.
x^{2}-\frac{11}{2}x=\frac{7}{2}
Pjesëtimi me 2 zhbën shumëzimin me 2.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=\frac{7}{2}+\left(-\frac{11}{4}\right)^{2}
Pjesëto -\frac{11}{2}, koeficientin e kufizës x, me 2 për të marrë -\frac{11}{4}. Më pas mblidh katrorin e -\frac{11}{4} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{7}{2}+\frac{121}{16}
Ngri në fuqi të dytë -\frac{11}{4} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{177}{16}
Mblidh \frac{7}{2} me \frac{121}{16} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x-\frac{11}{4}\right)^{2}=\frac{177}{16}
Faktori x^{2}-\frac{11}{2}x+\frac{121}{16}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{177}{16}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{11}{4}=\frac{\sqrt{177}}{4} x-\frac{11}{4}=-\frac{\sqrt{177}}{4}
Thjeshto.
x=\frac{\sqrt{177}+11}{4} x=\frac{11-\sqrt{177}}{4}
Mblidh \frac{11}{4} në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}