Kaloni tek përmbajtja kryesore
Faktorizo
Tick mark Image
Vlerëso
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

a+b=-17 ab=2\left(-69\right)=-138
Faktorizo shprehjen nëpërmjet grupimit. Së pari, shprehja duhet të rishkruhet si 2x^{2}+ax+bx-69. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,-138 2,-69 3,-46 6,-23
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është negative, numri negativ ka vlerë absolute më të madhe se ai pozitiv. Listo të gjitha këto çifte numrash të plotë që japin prodhimin -138.
1-138=-137 2-69=-67 3-46=-43 6-23=-17
Llogarit shumën për çdo çift.
a=-23 b=6
Zgjidhja është çifti që jep shumën -17.
\left(2x^{2}-23x\right)+\left(6x-69\right)
Rishkruaj 2x^{2}-17x-69 si \left(2x^{2}-23x\right)+\left(6x-69\right).
x\left(2x-23\right)+3\left(2x-23\right)
Faktorizo x në grupin e parë dhe 3 në të dytin.
\left(2x-23\right)\left(x+3\right)
Faktorizo pjesëtuesin e përbashkët 2x-23 duke përdorur vetinë e shpërndarjes.
2x^{2}-17x-69=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 2\left(-69\right)}}{2\times 2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 2\left(-69\right)}}{2\times 2}
Ngri në fuqi të dytë -17.
x=\frac{-\left(-17\right)±\sqrt{289-8\left(-69\right)}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-\left(-17\right)±\sqrt{289+552}}{2\times 2}
Shumëzo -8 herë -69.
x=\frac{-\left(-17\right)±\sqrt{841}}{2\times 2}
Mblidh 289 me 552.
x=\frac{-\left(-17\right)±29}{2\times 2}
Gjej rrënjën katrore të 841.
x=\frac{17±29}{2\times 2}
E kundërta e -17 është 17.
x=\frac{17±29}{4}
Shumëzo 2 herë 2.
x=\frac{46}{4}
Tani zgjidhe ekuacionin x=\frac{17±29}{4} kur ± është plus. Mblidh 17 me 29.
x=\frac{23}{2}
Thjeshto thyesën \frac{46}{4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=-\frac{12}{4}
Tani zgjidhe ekuacionin x=\frac{17±29}{4} kur ± është minus. Zbrit 29 nga 17.
x=-3
Pjesëto -12 me 4.
2x^{2}-17x-69=2\left(x-\frac{23}{2}\right)\left(x-\left(-3\right)\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso \frac{23}{2} për x_{1} dhe -3 për x_{2}.
2x^{2}-17x-69=2\left(x-\frac{23}{2}\right)\left(x+3\right)
Thjeshto të gjitha shprehjet e formës p-\left(-q\right) në p+q.
2x^{2}-17x-69=2\times \frac{2x-23}{2}\left(x+3\right)
Zbrit \frac{23}{2} nga x duke gjetur një emërues të përbashkët dhe duke zbritur numëruesit. Më pas thjeshto thyesën në kufizat më të vogla nëse është e mundur.
2x^{2}-17x-69=\left(2x-23\right)\left(x+3\right)
Thjeshto faktorin më të madh të përbashkët 2 në 2 dhe 2.