Gjej x
x=-3
x=-\frac{1}{2}=-0.5
Grafiku
Share
Kopjuar në clipboard
a+b=7 ab=2\times 3=6
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si 2x^{2}+ax+bx+3. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,6 2,3
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është pozitive, a dhe b janë të dyja pozitive. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 6.
1+6=7 2+3=5
Llogarit shumën për çdo çift.
a=1 b=6
Zgjidhja është çifti që jep shumën 7.
\left(2x^{2}+x\right)+\left(6x+3\right)
Rishkruaj 2x^{2}+7x+3 si \left(2x^{2}+x\right)+\left(6x+3\right).
x\left(2x+1\right)+3\left(2x+1\right)
Faktorizo x në grupin e parë dhe 3 në të dytin.
\left(2x+1\right)\left(x+3\right)
Faktorizo pjesëtuesin e përbashkët 2x+1 duke përdorur vetinë e shpërndarjes.
x=-\frac{1}{2} x=-3
Për të gjetur zgjidhjet e ekuacionit, zgjidh 2x+1=0 dhe x+3=0.
2x^{2}+7x+3=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-7±\sqrt{7^{2}-4\times 2\times 3}}{2\times 2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 2, b me 7 dhe c me 3 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 2\times 3}}{2\times 2}
Ngri në fuqi të dytë 7.
x=\frac{-7±\sqrt{49-8\times 3}}{2\times 2}
Shumëzo -4 herë 2.
x=\frac{-7±\sqrt{49-24}}{2\times 2}
Shumëzo -8 herë 3.
x=\frac{-7±\sqrt{25}}{2\times 2}
Mblidh 49 me -24.
x=\frac{-7±5}{2\times 2}
Gjej rrënjën katrore të 25.
x=\frac{-7±5}{4}
Shumëzo 2 herë 2.
x=-\frac{2}{4}
Tani zgjidhe ekuacionin x=\frac{-7±5}{4} kur ± është plus. Mblidh -7 me 5.
x=-\frac{1}{2}
Thjeshto thyesën \frac{-2}{4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=-\frac{12}{4}
Tani zgjidhe ekuacionin x=\frac{-7±5}{4} kur ± është minus. Zbrit 5 nga -7.
x=-3
Pjesëto -12 me 4.
x=-\frac{1}{2} x=-3
Ekuacioni është zgjidhur tani.
2x^{2}+7x+3=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
2x^{2}+7x+3-3=-3
Zbrit 3 nga të dyja anët e ekuacionit.
2x^{2}+7x=-3
Zbritja e 3 nga vetja e tij jep 0.
\frac{2x^{2}+7x}{2}=-\frac{3}{2}
Pjesëto të dyja anët me 2.
x^{2}+\frac{7}{2}x=-\frac{3}{2}
Pjesëtimi me 2 zhbën shumëzimin me 2.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{7}{4}\right)^{2}
Pjesëto \frac{7}{2}, koeficientin e kufizës x, me 2 për të marrë \frac{7}{4}. Më pas mblidh katrorin e \frac{7}{4} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
Ngri në fuqi të dytë \frac{7}{4} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
Mblidh -\frac{3}{2} me \frac{49}{16} duke gjetur një emërues të përbashkët dhe duke mbledhur numëruesit. Pastaj zvogëlo thyesën në kufizat më të vogla nëse është e mundur.
\left(x+\frac{7}{4}\right)^{2}=\frac{25}{16}
Faktori x^{2}+\frac{7}{2}x+\frac{49}{16}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x+\frac{7}{4}=\frac{5}{4} x+\frac{7}{4}=-\frac{5}{4}
Thjeshto.
x=-\frac{1}{2} x=-3
Zbrit \frac{7}{4} nga të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}