Kaloni tek përmbajtja kryesore
Gjej x (complex solution)
Tick mark Image
Gjej x
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2xx^{2}+x^{2}+1=0
Ndryshorja x nuk mund të jetë e barabartë me 0 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me x^{2}.
2x^{3}+x^{2}+1=0
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre. Mblidh 1 me 2 për të marrë 3.
±\frac{1}{2},±1
Sipas teoremës së rrënjëve racionale, të gjitha rrënjët racionale të një polinomi janë në formën \frac{p}{q}, ku p pjesëtohet me kufizën konstante 1 dhe q pjesëtohet me koeficientin kryesor 2. Lista e të gjithë kandidatëve \frac{p}{q}.
x=-1
Gjej një rrënjë të tillë duke provuar të gjitha vlerat me numra të plotë, duke filluar nga vlera më e vogël sipas vlerës absolute. Nëse nuk gjendet asnjë rrënjë e plotë, provo thyesat.
2x^{2}-x+1=0
Sipas teoremës së faktorëve, x-k është një faktor i polinomit për çdo rrënjë k. Pjesëto 2x^{3}+x^{2}+1 me x+1 për të marrë 2x^{2}-x+1. Zgjidh ekuacionin ku rezultati është i barabartë me 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Zëvendëso 2 për a, -1 për b dhe 1 për c në formulën e zgjidhjes së ekuacioneve të shkallës së dytë.
x=\frac{1±\sqrt{-7}}{4}
Bëj llogaritjet.
x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
Zgjidh ekuacionin 2x^{2}-x+1=0 kur ± është plus dhe kur ± është minus.
x=-1 x=\frac{-\sqrt{7}i+1}{4} x=\frac{1+\sqrt{7}i}{4}
Listo të gjitha zgjidhjet e gjetura.
2xx^{2}+x^{2}+1=0
Ndryshorja x nuk mund të jetë e barabartë me 0 meqenëse pjesëtimi me zero nuk është përcaktuar. Shumëzo të dyja anët e ekuacionit me x^{2}.
2x^{3}+x^{2}+1=0
Për të shumëzuar fuqitë me bazë të njëjtë, mblidh eksponentët e tyre. Mblidh 1 me 2 për të marrë 3.
±\frac{1}{2},±1
Sipas teoremës së rrënjëve racionale, të gjitha rrënjët racionale të një polinomi janë në formën \frac{p}{q}, ku p pjesëtohet me kufizën konstante 1 dhe q pjesëtohet me koeficientin kryesor 2. Lista e të gjithë kandidatëve \frac{p}{q}.
x=-1
Gjej një rrënjë të tillë duke provuar të gjitha vlerat me numra të plotë, duke filluar nga vlera më e vogël sipas vlerës absolute. Nëse nuk gjendet asnjë rrënjë e plotë, provo thyesat.
2x^{2}-x+1=0
Sipas teoremës së faktorëve, x-k është një faktor i polinomit për çdo rrënjë k. Pjesëto 2x^{3}+x^{2}+1 me x+1 për të marrë 2x^{2}-x+1. Zgjidh ekuacionin ku rezultati është i barabartë me 0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 2\times 1}}{2\times 2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Zëvendëso 2 për a, -1 për b dhe 1 për c në formulën e zgjidhjes së ekuacioneve të shkallës së dytë.
x=\frac{1±\sqrt{-7}}{4}
Bëj llogaritjet.
x\in \emptyset
Meqë rrënja katrore e një numri negativ nuk përcaktohet në fushën reale, nuk ka zgjidhje.
x=-1
Listo të gjitha zgjidhjet e gjetura.