Gjej x (complex solution)
x=\frac{1+\sqrt{623}i}{2}\approx 0.5+12.479983974i
x=\frac{-\sqrt{623}i+1}{2}\approx 0.5-12.479983974i
Grafiku
Share
Kopjuar në clipboard
x^{2}-x+156=0
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 156}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me -1 dhe c me 156 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-624}}{2}
Shumëzo -4 herë 156.
x=\frac{-\left(-1\right)±\sqrt{-623}}{2}
Mblidh 1 me -624.
x=\frac{-\left(-1\right)±\sqrt{623}i}{2}
Gjej rrënjën katrore të -623.
x=\frac{1±\sqrt{623}i}{2}
E kundërta e -1 është 1.
x=\frac{1+\sqrt{623}i}{2}
Tani zgjidhe ekuacionin x=\frac{1±\sqrt{623}i}{2} kur ± është plus. Mblidh 1 me i\sqrt{623}.
x=\frac{-\sqrt{623}i+1}{2}
Tani zgjidhe ekuacionin x=\frac{1±\sqrt{623}i}{2} kur ± është minus. Zbrit i\sqrt{623} nga 1.
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Ekuacioni është zgjidhur tani.
x^{2}-x+156=0
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
x^{2}-x=-156
Zbrit 156 nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-156+\left(-\frac{1}{2}\right)^{2}
Pjesëto -1, koeficientin e kufizës x, me 2 për të marrë -\frac{1}{2}. Më pas mblidh katrorin e -\frac{1}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-x+\frac{1}{4}=-156+\frac{1}{4}
Ngri në fuqi të dytë -\frac{1}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-x+\frac{1}{4}=-\frac{623}{4}
Mblidh -156 me \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{623}{4}
Faktori x^{2}-x+\frac{1}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{623}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{1}{2}=\frac{\sqrt{623}i}{2} x-\frac{1}{2}=-\frac{\sqrt{623}i}{2}
Thjeshto.
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Mblidh \frac{1}{2} në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}