Kaloni tek përmbajtja kryesore
Gjej x (complex solution)
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x^{2}-x+156=0
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 156}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me -1 dhe c me 156 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-624}}{2}
Shumëzo -4 herë 156.
x=\frac{-\left(-1\right)±\sqrt{-623}}{2}
Mblidh 1 me -624.
x=\frac{-\left(-1\right)±\sqrt{623}i}{2}
Gjej rrënjën katrore të -623.
x=\frac{1±\sqrt{623}i}{2}
E kundërta e -1 është 1.
x=\frac{1+\sqrt{623}i}{2}
Tani zgjidhe ekuacionin x=\frac{1±\sqrt{623}i}{2} kur ± është plus. Mblidh 1 me i\sqrt{623}.
x=\frac{-\sqrt{623}i+1}{2}
Tani zgjidhe ekuacionin x=\frac{1±\sqrt{623}i}{2} kur ± është minus. Zbrit i\sqrt{623} nga 1.
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Ekuacioni është zgjidhur tani.
x^{2}-x+156=0
Ndërro anët në mënyrë që të gjitha kufizat me ndryshore të jenë në anën e majtë.
x^{2}-x=-156
Zbrit 156 nga të dyja anët. Një numër i zbritur nga zero është i barabartë me atë numër me shenjë negative.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-156+\left(-\frac{1}{2}\right)^{2}
Pjesëto -1, koeficientin e kufizës x, me 2 për të marrë -\frac{1}{2}. Më pas mblidh katrorin e -\frac{1}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-x+\frac{1}{4}=-156+\frac{1}{4}
Ngri në fuqi të dytë -\frac{1}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}-x+\frac{1}{4}=-\frac{623}{4}
Mblidh -156 me \frac{1}{4}.
\left(x-\frac{1}{2}\right)^{2}=-\frac{623}{4}
Faktori x^{2}-x+\frac{1}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{623}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{1}{2}=\frac{\sqrt{623}i}{2} x-\frac{1}{2}=-\frac{\sqrt{623}i}{2}
Thjeshto.
x=\frac{1+\sqrt{623}i}{2} x=\frac{-\sqrt{623}i+1}{2}
Mblidh \frac{1}{2} në të dyja anët e ekuacionit.