Kaloni tek përmbajtja kryesore
Faktorizo
Tick mark Image
Vlerëso
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x^{2}-x-30
Risistemo polinomin për ta vendosur në formën standarde. Renditi kufizat nga fuqia më e madhe tek ajo më e vogël.
a+b=-1 ab=1\left(-30\right)=-30
Faktorizo shprehjen nëpërmjet grupimit. Së pari, shprehja duhet të rishkruhet si x^{2}+ax+bx-30. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,-30 2,-15 3,-10 5,-6
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është negative, numri negativ ka vlerë absolute më të madhe se ai pozitiv. Listo të gjitha këto çifte numrash të plotë që japin prodhimin -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Llogarit shumën për çdo çift.
a=-6 b=5
Zgjidhja është çifti që jep shumën -1.
\left(x^{2}-6x\right)+\left(5x-30\right)
Rishkruaj x^{2}-x-30 si \left(x^{2}-6x\right)+\left(5x-30\right).
x\left(x-6\right)+5\left(x-6\right)
Faktorizo x në grupin e parë dhe 5 në të dytin.
\left(x-6\right)\left(x+5\right)
Faktorizo pjesëtuesin e përbashkët x-6 duke përdorur vetinë e shpërndarjes.
x^{2}-x-30=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
Shumëzo -4 herë -30.
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
Mblidh 1 me 120.
x=\frac{-\left(-1\right)±11}{2}
Gjej rrënjën katrore të 121.
x=\frac{1±11}{2}
E kundërta e -1 është 1.
x=\frac{12}{2}
Tani zgjidhe ekuacionin x=\frac{1±11}{2} kur ± është plus. Mblidh 1 me 11.
x=6
Pjesëto 12 me 2.
x=-\frac{10}{2}
Tani zgjidhe ekuacionin x=\frac{1±11}{2} kur ± është minus. Zbrit 11 nga 1.
x=-5
Pjesëto -10 me 2.
x^{2}-x-30=\left(x-6\right)\left(x-\left(-5\right)\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso 6 për x_{1} dhe -5 për x_{2}.
x^{2}-x-30=\left(x-6\right)\left(x+5\right)
Thjeshto të gjitha shprehjet e formës p-\left(-q\right) në p+q.