Gjej x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=0
Grafiku
Share
Kopjuar në clipboard
x\left(-2x+3\right)=0
Faktorizo x.
x=0 x=\frac{3}{2}
Për të gjetur zgjidhjet e ekuacionit, zgjidh x=0 dhe -2x+3=0.
-2x^{2}+3x=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-3±\sqrt{3^{2}}}{2\left(-2\right)}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me -2, b me 3 dhe c me 0 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±3}{2\left(-2\right)}
Gjej rrënjën katrore të 3^{2}.
x=\frac{-3±3}{-4}
Shumëzo 2 herë -2.
x=\frac{0}{-4}
Tani zgjidhe ekuacionin x=\frac{-3±3}{-4} kur ± është plus. Mblidh -3 me 3.
x=0
Pjesëto 0 me -4.
x=-\frac{6}{-4}
Tani zgjidhe ekuacionin x=\frac{-3±3}{-4} kur ± është minus. Zbrit 3 nga -3.
x=\frac{3}{2}
Thjeshto thyesën \frac{-6}{-4} në kufizat më të vogla duke zbritur dhe thjeshtuar 2.
x=0 x=\frac{3}{2}
Ekuacioni është zgjidhur tani.
-2x^{2}+3x=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
\frac{-2x^{2}+3x}{-2}=\frac{0}{-2}
Pjesëto të dyja anët me -2.
x^{2}+\frac{3}{-2}x=\frac{0}{-2}
Pjesëtimi me -2 zhbën shumëzimin me -2.
x^{2}-\frac{3}{2}x=\frac{0}{-2}
Pjesëto 3 me -2.
x^{2}-\frac{3}{2}x=0
Pjesëto 0 me -2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\left(-\frac{3}{4}\right)^{2}
Pjesëto -\frac{3}{2}, koeficientin e kufizës x, me 2 për të marrë -\frac{3}{4}. Më pas mblidh katrorin e -\frac{3}{4} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{16}
Ngri në fuqi të dytë -\frac{3}{4} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
\left(x-\frac{3}{4}\right)^{2}=\frac{9}{16}
Faktori x^{2}-\frac{3}{2}x+\frac{9}{16}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x-\frac{3}{4}=\frac{3}{4} x-\frac{3}{4}=-\frac{3}{4}
Thjeshto.
x=\frac{3}{2} x=0
Mblidh \frac{3}{4} në të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}