Gjej V_2 (complex solution)
\left\{\begin{matrix}V_{2}=\frac{V_{1}^{2}+V_{1}v_{2}-2v_{1}v_{2}}{v_{2}+V_{1}}\text{, }&V_{1}\neq -v_{2}\\V_{2}\in \mathrm{C}\text{, }&\left(v_{1}=0\text{ and }V_{1}=-v_{2}\right)\text{ or }\left(v_{2}=0\text{ and }V_{1}=0\right)\text{ or }x=0\end{matrix}\right.
Gjej V_2
\left\{\begin{matrix}V_{2}=\frac{V_{1}^{2}+V_{1}v_{2}-2v_{1}v_{2}}{v_{2}+V_{1}}\text{, }&V_{1}\neq -v_{2}\\V_{2}\in \mathrm{R}\text{, }&\left(v_{1}=0\text{ and }V_{1}=-v_{2}\right)\text{ or }\left(v_{2}=0\text{ and }V_{1}=0\right)\text{ or }x=0\end{matrix}\right.
Gjej V_1 (complex solution)
\left\{\begin{matrix}\\V_{1}=\frac{\sqrt{8v_{1}v_{2}+v_{2}^{2}+2V_{2}v_{2}+V_{2}^{2}}+V_{2}-v_{2}}{2}\text{; }V_{1}=\frac{-\sqrt{8v_{1}v_{2}+v_{2}^{2}+2V_{2}v_{2}+V_{2}^{2}}+V_{2}-v_{2}}{2}\text{, }&\text{unconditionally}\\V_{1}\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Gjej V_1
\left\{\begin{matrix}V_{1}=\frac{\sqrt{8v_{1}v_{2}+v_{2}^{2}+2V_{2}v_{2}+V_{2}^{2}}+V_{2}-v_{2}}{2}\text{; }V_{1}=\frac{-\sqrt{8v_{1}v_{2}+v_{2}^{2}+2V_{2}v_{2}+V_{2}^{2}}+V_{2}-v_{2}}{2}\text{, }&\left(v_{1}>0\text{ and }v_{2}>0\right)\text{ or }\left(v_{2}<0\text{ and }v_{1}<0\right)\text{ or }V_{2}\geq 2\sqrt{-2v_{1}v_{2}}-v_{2}\text{ or }V_{2}\leq -2\sqrt{-2v_{1}v_{2}}-v_{2}\text{ or }\left(v_{2}\leq 0\text{ and }v_{1}\leq 0\right)\text{ or }\left(v_{1}\geq 0\text{ and }v_{2}\geq 0\right)\\V_{1}\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Grafiku
Share
Kopjuar në clipboard
\left(V_{1}x-V_{2}x\right)\left(V_{1}+v_{2}\right)=2v_{1}xv_{2}
Përdor vetinë e shpërndarjes për të shumëzuar V_{1}-V_{2} me x.
xV_{1}^{2}+V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}
Përdor vetinë e shpërndarjes për të shumëzuar V_{1}x-V_{2}x me V_{1}+v_{2}.
V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}
Zbrit xV_{1}^{2} nga të dyja anët.
-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}-V_{1}xv_{2}
Zbrit V_{1}xv_{2} nga të dyja anët.
-V_{1}V_{2}x-V_{2}v_{2}x=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
Rirendit kufizat.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
Kombino të gjitha kufizat që përmbajnë V_{2}.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-xV_{1}^{2}-V_{1}v_{2}x
Ekuacioni është në formën standarde.
\frac{\left(-V_{1}x-v_{2}x\right)V_{2}}{-V_{1}x-v_{2}x}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
Pjesëto të dyja anët me -V_{1}x-v_{2}x.
V_{2}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
Pjesëtimi me -V_{1}x-v_{2}x zhbën shumëzimin me -V_{1}x-v_{2}x.
V_{2}=-\frac{2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}}{v_{2}+V_{1}}
Pjesëto x\left(2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}\right) me -V_{1}x-v_{2}x.
\left(V_{1}x-V_{2}x\right)\left(V_{1}+v_{2}\right)=2v_{1}xv_{2}
Përdor vetinë e shpërndarjes për të shumëzuar V_{1}-V_{2} me x.
xV_{1}^{2}+V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}
Përdor vetinë e shpërndarjes për të shumëzuar V_{1}x-V_{2}x me V_{1}+v_{2}.
V_{1}xv_{2}-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}
Zbrit xV_{1}^{2} nga të dyja anët.
-V_{2}xV_{1}-V_{2}xv_{2}=2v_{1}xv_{2}-xV_{1}^{2}-V_{1}xv_{2}
Zbrit V_{1}xv_{2} nga të dyja anët.
-V_{1}V_{2}x-V_{2}v_{2}x=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
Rirendit kufizat.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-V_{1}v_{2}x-xV_{1}^{2}
Kombino të gjitha kufizat që përmbajnë V_{2}.
\left(-V_{1}x-v_{2}x\right)V_{2}=2v_{1}v_{2}x-xV_{1}^{2}-V_{1}v_{2}x
Ekuacioni është në formën standarde.
\frac{\left(-V_{1}x-v_{2}x\right)V_{2}}{-V_{1}x-v_{2}x}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
Pjesëto të dyja anët me -V_{1}x-v_{2}x.
V_{2}=\frac{x\left(-V_{1}v_{2}+2v_{1}v_{2}-V_{1}^{2}\right)}{-V_{1}x-v_{2}x}
Pjesëtimi me -V_{1}x-v_{2}x zhbën shumëzimin me -V_{1}x-v_{2}x.
V_{2}=-\frac{2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}}{v_{2}+V_{1}}
Pjesëto x\left(2v_{1}v_{2}-V_{1}v_{2}-V_{1}^{2}\right) me -V_{1}x-v_{2}x.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}