Kaloni tek përmbajtja kryesore
Vlerëso
Tick mark Image
Diferenco në lidhje me r
Tick mark Image

Probleme të ngjashme nga kërkimi në ueb

Share

\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
Për ta ngritur \frac{-r^{4}}{64r^{7}} në një fuqi, ngri numëruesin dhe emëruesin në atë fuqi dhe më pas pjesëtoji.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
Zhvillo \left(64r^{7}\right)^{\frac{2}{3}}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 7 me \frac{2}{3} për të marrë \frac{14}{3}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Llogarit 64 në fuqi të \frac{2}{3} dhe merr 16.
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Zhvillo \left(-r^{4}\right)^{\frac{2}{3}}.
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Për të ngritur një fuqi në një fuqi tjetër, shumëzo eksponentët. Shumëzo 4 me \frac{2}{3} për të marrë \frac{8}{3}.
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Llogarit -1 në fuqi të \frac{2}{3} dhe merr 1.
\frac{1}{16r^{2}}
Thjeshto r^{\frac{8}{3}} në numërues dhe emërues.
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
Nëse F është përbërja e dy funksioneve të diferencueshme f\left(u\right) dhe u=g\left(x\right), që do të thotë, nëse F\left(x\right)=f\left(g\left(x\right)\right), atëherë derivati i F është derivati i f në lidhje me u i shumëzuar me derivatin e g në lidhje me x, që do të thotë, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
Për dy funksione të diferencueshme të çfarëdoshme, derivati i herësit të dy funksioneve është emëruesi i shumëzuar me derivatin e numëruesit minus numëruesin e shumëzuar me derivatin e emëruesit, të gjithë të pjesëtuar me emëruesin në katror.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Derivati i një polinomi është i barabartë me shumën e derivateve të kufizave të tij. Derivati i një kufize konstante është 0. Derivati i ax^{n} është nax^{n-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Shumëzo 64r^{7} herë 4\left(-1\right)r^{4-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
Shumëzo -r^{4} herë 7\times 64r^{7-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
Thjeshto.