( \cos x \cos y + 2 x ) d x - ( \sin x \sin y + 2 y ) d y = 0
Gjej d
\left\{\begin{matrix}\\d=0\text{, }&\text{unconditionally}\\d\in \mathrm{R}\text{, }&x\left(\cos(x)\cos(y)+2x\right)-y\left(\sin(x)\sin(y)+2y\right)=0\end{matrix}\right.
Kuiz
Trigonometry
5 probleme të ngjashme me:
( \cos x \cos y + 2 x ) d x - ( \sin x \sin y + 2 y ) d y = 0
Share
Kopjuar në clipboard
\left(\cos(x)\cos(y)d+2xd\right)x-\left(\sin(x)\sin(y)+2y\right)dy=0
Përdor vetinë e shpërndarjes për të shumëzuar \cos(x)\cos(y)+2x me d.
\cos(x)\cos(y)dx+2dx^{2}-\left(\sin(x)\sin(y)+2y\right)dy=0
Përdor vetinë e shpërndarjes për të shumëzuar \cos(x)\cos(y)d+2xd me x.
\cos(x)\cos(y)dx+2dx^{2}-\left(\sin(x)\sin(y)d+2yd\right)y=0
Përdor vetinë e shpërndarjes për të shumëzuar \sin(x)\sin(y)+2y me d.
\cos(x)\cos(y)dx+2dx^{2}-\left(\sin(x)\sin(y)dy+2dy^{2}\right)=0
Përdor vetinë e shpërndarjes për të shumëzuar \sin(x)\sin(y)d+2yd me y.
\cos(x)\cos(y)dx+2dx^{2}-\sin(x)\sin(y)dy-2dy^{2}=0
Për të gjetur të kundërtën e \sin(x)\sin(y)dy+2dy^{2}, gjej të kundërtën e çdo kufize.
\left(\cos(x)\cos(y)x+2x^{2}-\sin(x)\sin(y)y-2y^{2}\right)d=0
Kombino të gjitha kufizat që përmbajnë d.
\left(x\cos(x)\cos(y)-y\sin(x)\sin(y)+2x^{2}-2y^{2}\right)d=0
Ekuacioni është në formën standarde.
d=0
Pjesëto 0 me \cos(x)\cos(y)x+2x^{2}-\sin(x)\sin(y)y-2y^{2}.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}