Gjej x (complex solution)
x=\frac{\sqrt{-2\sqrt{364+y^{4}-4\pi y^{4}}-2y^{2}}}{2}
x=-\frac{\sqrt{-2\sqrt{364+y^{4}-4\pi y^{4}}-2y^{2}}}{2}
x=-\frac{\sqrt{2\sqrt{364+y^{4}-4\pi y^{4}}-2y^{2}}}{2}
x=\frac{\sqrt{2\sqrt{364+y^{4}-4\pi y^{4}}-2y^{2}}}{2}
Gjej y (complex solution)
y=\frac{i\sqrt{\frac{2\left(\sqrt{364\pi +x^{4}-4\pi x^{4}}+x^{2}\right)}{\pi }}}{2}
y=-\frac{i\sqrt{\frac{2\left(\sqrt{364\pi +x^{4}-4\pi x^{4}}+x^{2}\right)}{\pi }}}{2}
y=-\frac{\sqrt{\frac{2\left(\sqrt{364\pi +x^{4}-4\pi x^{4}}-x^{2}\right)}{\pi }}}{2}
y=\frac{\sqrt{\frac{2\left(\sqrt{364\pi +x^{4}-4\pi x^{4}}-x^{2}\right)}{\pi }}}{2}
Gjej x
x=-\frac{\sqrt{2\left(\sqrt{364+y^{4}-4\pi y^{4}}-y^{2}\right)}}{2}
x=\frac{\sqrt{2\left(\sqrt{364+y^{4}-4\pi y^{4}}-y^{2}\right)}}{2}\text{, }|y|\leq \frac{\sqrt[4]{91}}{\sqrt[4]{\pi }}
Gjej y
y=-\frac{\sqrt{\frac{2\left(\sqrt{364\pi +x^{4}-4\pi x^{4}}-x^{2}\right)}{\pi }}}{2}
y=\frac{\sqrt{\frac{2\left(\sqrt{364\pi +x^{4}-4\pi x^{4}}-x^{2}\right)}{\pi }}}{2}\text{, }|x|\leq \sqrt[4]{91}
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}