Gjej x
x=-2
x=1
Grafiku
Share
Kopjuar në clipboard
a+b=1 ab=-2
Për të zgjidhur ekuacionin, faktorizo x^{2}+x-2 me anë të formulës x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
a=-1 b=2
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është pozitive, numri pozitiv ka vlerë absolute më të madhe se ai negativ. Vetëm një çift i tillë është zgjidhja e sistemit.
\left(x-1\right)\left(x+2\right)
Rishkruaj shprehjen e faktorizuar \left(x+a\right)\left(x+b\right) duke përdorur vlerat e fituara.
x=1 x=-2
Për të gjetur zgjidhjet e ekuacionit, zgjidh x-1=0 dhe x+2=0.
a+b=1 ab=1\left(-2\right)=-2
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si x^{2}+ax+bx-2. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
a=-1 b=2
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është pozitive, numri pozitiv ka vlerë absolute më të madhe se ai negativ. Vetëm një çift i tillë është zgjidhja e sistemit.
\left(x^{2}-x\right)+\left(2x-2\right)
Rishkruaj x^{2}+x-2 si \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Faktorizo x në grupin e parë dhe 2 në të dytin.
\left(x-1\right)\left(x+2\right)
Faktorizo pjesëtuesin e përbashkët x-1 duke përdorur vetinë e shpërndarjes.
x=1 x=-2
Për të gjetur zgjidhjet e ekuacionit, zgjidh x-1=0 dhe x+2=0.
x^{2}+x-2=0
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me 1 dhe c me -2 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2}
Ngri në fuqi të dytë 1.
x=\frac{-1±\sqrt{1+8}}{2}
Shumëzo -4 herë -2.
x=\frac{-1±\sqrt{9}}{2}
Mblidh 1 me 8.
x=\frac{-1±3}{2}
Gjej rrënjën katrore të 9.
x=\frac{2}{2}
Tani zgjidhe ekuacionin x=\frac{-1±3}{2} kur ± është plus. Mblidh -1 me 3.
x=1
Pjesëto 2 me 2.
x=-\frac{4}{2}
Tani zgjidhe ekuacionin x=\frac{-1±3}{2} kur ± është minus. Zbrit 3 nga -1.
x=-2
Pjesëto -4 me 2.
x=1 x=-2
Ekuacioni është zgjidhur tani.
x^{2}+x-2=0
Ekuacionet e shkallës së dytë si ky mund të zgjidhen duke plotësuar katrorin. Për të plotësuar katrorin, ekuacioni duhet të jetë në fillim në formën x^{2}+bx=c.
x^{2}+x-2-\left(-2\right)=-\left(-2\right)
Mblidh 2 në të dyja anët e ekuacionit.
x^{2}+x=-\left(-2\right)
Zbritja e -2 nga vetja e tij jep 0.
x^{2}+x=2
Zbrit -2 nga 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Pjesëto 1, koeficientin e kufizës x, me 2 për të marrë \frac{1}{2}. Më pas mblidh katrorin e \frac{1}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Ngri në fuqi të dytë \frac{1}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Mblidh 2 me \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Faktori x^{2}+x+\frac{1}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror i përsosur, ai mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Thjeshto.
x=1 x=-2
Zbrit \frac{1}{2} nga të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}