Gjej x
x=-7
x=4
Grafiku
Share
Kopjuar në clipboard
x^{2}+6x-52=3x-24
Përdor vetinë e shpërndarjes për të shumëzuar 3 me x-8.
x^{2}+6x-52-3x=-24
Zbrit 3x nga të dyja anët.
x^{2}+3x-52=-24
Kombino 6x dhe -3x për të marrë 3x.
x^{2}+3x-52+24=0
Shto 24 në të dyja anët.
x^{2}+3x-28=0
Shto -52 dhe 24 për të marrë -28.
a+b=3 ab=-28
Për të zgjidhur ekuacionin, faktorizo x^{2}+3x-28 me anë të formulës x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
-1,28 -2,14 -4,7
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është pozitive, numri pozitiv ka vlerë absolute më të madhe se ai negativ. Listo të gjitha këto çifte numrash të plotë që japin prodhimin -28.
-1+28=27 -2+14=12 -4+7=3
Llogarit shumën për çdo çift.
a=-4 b=7
Zgjidhja është çifti që jep shumën 3.
\left(x-4\right)\left(x+7\right)
Rishkruaj shprehjen e faktorizuar \left(x+a\right)\left(x+b\right) duke përdorur vlerat e fituara.
x=4 x=-7
Për të gjetur zgjidhjet e ekuacionit, zgjidh x-4=0 dhe x+7=0.
x^{2}+6x-52=3x-24
Përdor vetinë e shpërndarjes për të shumëzuar 3 me x-8.
x^{2}+6x-52-3x=-24
Zbrit 3x nga të dyja anët.
x^{2}+3x-52=-24
Kombino 6x dhe -3x për të marrë 3x.
x^{2}+3x-52+24=0
Shto 24 në të dyja anët.
x^{2}+3x-28=0
Shto -52 dhe 24 për të marrë -28.
a+b=3 ab=1\left(-28\right)=-28
Për të zgjidhur ekuacionin, faktorizo anën e majtë nëpërmjet grupimit. Së pari, ana e majtë duhet të rishkruhet si x^{2}+ax+bx-28. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
-1,28 -2,14 -4,7
Meqenëse ab është negative, a dhe b kanë shenja të kundërta. Meqenëse a+b është pozitive, numri pozitiv ka vlerë absolute më të madhe se ai negativ. Listo të gjitha këto çifte numrash të plotë që japin prodhimin -28.
-1+28=27 -2+14=12 -4+7=3
Llogarit shumën për çdo çift.
a=-4 b=7
Zgjidhja është çifti që jep shumën 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Rishkruaj x^{2}+3x-28 si \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Faktorizo x në grupin e parë dhe 7 në të dytin.
\left(x-4\right)\left(x+7\right)
Faktorizo pjesëtuesin e përbashkët x-4 duke përdorur vetinë e shpërndarjes.
x=4 x=-7
Për të gjetur zgjidhjet e ekuacionit, zgjidh x-4=0 dhe x+7=0.
x^{2}+6x-52=3x-24
Përdor vetinë e shpërndarjes për të shumëzuar 3 me x-8.
x^{2}+6x-52-3x=-24
Zbrit 3x nga të dyja anët.
x^{2}+3x-52=-24
Kombino 6x dhe -3x për të marrë 3x.
x^{2}+3x-52+24=0
Shto 24 në të dyja anët.
x^{2}+3x-28=0
Shto -52 dhe 24 për të marrë -28.
x=\frac{-3±\sqrt{3^{2}-4\left(-28\right)}}{2}
Ky ekuacion është në formën standarde: ax^{2}+bx+c=0. Zëvendëso a me 1, b me 3 dhe c me -28 në formulën e zgjidhjes së ekuacioneve të shkallës së dytë, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-28\right)}}{2}
Ngri në fuqi të dytë 3.
x=\frac{-3±\sqrt{9+112}}{2}
Shumëzo -4 herë -28.
x=\frac{-3±\sqrt{121}}{2}
Mblidh 9 me 112.
x=\frac{-3±11}{2}
Gjej rrënjën katrore të 121.
x=\frac{8}{2}
Tani zgjidhe ekuacionin x=\frac{-3±11}{2} kur ± është plus. Mblidh -3 me 11.
x=4
Pjesëto 8 me 2.
x=-\frac{14}{2}
Tani zgjidhe ekuacionin x=\frac{-3±11}{2} kur ± është minus. Zbrit 11 nga -3.
x=-7
Pjesëto -14 me 2.
x=4 x=-7
Ekuacioni është zgjidhur tani.
x^{2}+6x-52=3x-24
Përdor vetinë e shpërndarjes për të shumëzuar 3 me x-8.
x^{2}+6x-52-3x=-24
Zbrit 3x nga të dyja anët.
x^{2}+3x-52=-24
Kombino 6x dhe -3x për të marrë 3x.
x^{2}+3x=-24+52
Shto 52 në të dyja anët.
x^{2}+3x=28
Shto -24 dhe 52 për të marrë 28.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Pjesëto 3, koeficientin e kufizës x, me 2 për të marrë \frac{3}{2}. Më pas mblidh katrorin e \frac{3}{2} në të dyja anët e ekuacionit. Ky hap e bën anën e majtë të ekuacionit një katror të përsosur.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Ngri në fuqi të dytë \frac{3}{2} duke ngritur në fuqi të dytë që të dy, numëruesin dhe emëruesin e thyesës.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Mblidh 28 me \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Faktori x^{2}+3x+\frac{9}{4}. Në përgjithësi, kur x^{2}+bx+c është një katror perfekt, mund të faktorizohet gjithmonë si \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Gjej rrënjën katrore të të dyja anëve të ekuacionit.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Thjeshto.
x=4 x=-7
Zbrit \frac{3}{2} nga të dyja anët e ekuacionit.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}