Faktorizo
\left(x+16\right)\left(x+24\right)
Vlerëso
\left(x+16\right)\left(x+24\right)
Grafiku
Share
Kopjuar në clipboard
a+b=40 ab=1\times 384=384
Faktorizo shprehjen nëpërmjet grupimit. Së pari, shprehja duhet të rishkruhet si x^{2}+ax+bx+384. Për të gjetur a dhe b, parametrizo një sistem për ta zgjidhur.
1,384 2,192 3,128 4,96 6,64 8,48 12,32 16,24
Meqenëse ab është pozitive, a dhe b kanë shenjë të njëjtë. Meqenëse a+b është pozitive, a dhe b janë të dyja pozitive. Listo të gjitha këto çifte numrash të plotë që japin prodhimin 384.
1+384=385 2+192=194 3+128=131 4+96=100 6+64=70 8+48=56 12+32=44 16+24=40
Llogarit shumën për çdo çift.
a=16 b=24
Zgjidhja është çifti që jep shumën 40.
\left(x^{2}+16x\right)+\left(24x+384\right)
Rishkruaj x^{2}+40x+384 si \left(x^{2}+16x\right)+\left(24x+384\right).
x\left(x+16\right)+24\left(x+16\right)
Faktorizo x në grupin e parë dhe 24 në të dytin.
\left(x+16\right)\left(x+24\right)
Faktorizo pjesëtuesin e përbashkët x+16 duke përdorur vetinë e shpërndarjes.
x^{2}+40x+384=0
Polinomi i shkallës së dytë mund të faktorizohet duke përdorur transformimin ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ku x_{1} dhe x_{2} janë zgjidhjet e ekuacionit të shkallës së dytë ax^{2}+bx+c=0.
x=\frac{-40±\sqrt{40^{2}-4\times 384}}{2}
Të gjitha ekuacionet e formës ax^{2}+bx+c=0 mund të zgjidhen duke përdorur formulën e zgjidhjes së ekuacioneve të shkallës së dytë: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula e zgjidhjes së ekuacioneve të shkallës së dytë jep dy zgjidhje, një kur ± është mbledhje dhe një kur është zbritje.
x=\frac{-40±\sqrt{1600-4\times 384}}{2}
Ngri në fuqi të dytë 40.
x=\frac{-40±\sqrt{1600-1536}}{2}
Shumëzo -4 herë 384.
x=\frac{-40±\sqrt{64}}{2}
Mblidh 1600 me -1536.
x=\frac{-40±8}{2}
Gjej rrënjën katrore të 64.
x=-\frac{32}{2}
Tani zgjidhe ekuacionin x=\frac{-40±8}{2} kur ± është plus. Mblidh -40 me 8.
x=-16
Pjesëto -32 me 2.
x=-\frac{48}{2}
Tani zgjidhe ekuacionin x=\frac{-40±8}{2} kur ± është minus. Zbrit 8 nga -40.
x=-24
Pjesëto -48 me 2.
x^{2}+40x+384=\left(x-\left(-16\right)\right)\left(x-\left(-24\right)\right)
Faktorizo shprehjen origjinale duke përdorur ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Zëvendëso -16 për x_{1} dhe -24 për x_{2}.
x^{2}+40x+384=\left(x+16\right)\left(x+24\right)
Thjeshto të gjitha shprehjet e formës p-\left(-q\right) në p+q.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}