Gjej x
x=-\frac{\sqrt{3}y}{3}+y+\sqrt{3}
Gjej y
y=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}x-3\right)}{2}
Grafiku
Share
Kopjuar në clipboard
\sqrt{3}x+y-\sqrt{3}y=3
Përdor vetinë e shpërndarjes për të shumëzuar 1-\sqrt{3} me y.
\sqrt{3}x-\sqrt{3}y=3-y
Zbrit y nga të dyja anët.
\sqrt{3}x=3-y+\sqrt{3}y
Shto \sqrt{3}y në të dyja anët.
\sqrt{3}x=\sqrt{3}y-y+3
Ekuacioni është në formën standarde.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{\sqrt{3}y-y+3}{\sqrt{3}}
Pjesëto të dyja anët me \sqrt{3}.
x=\frac{\sqrt{3}y-y+3}{\sqrt{3}}
Pjesëtimi me \sqrt{3} zhbën shumëzimin me \sqrt{3}.
x=\frac{\sqrt{3}\left(\sqrt{3}y-y+3\right)}{3}
Pjesëto 3-y+\sqrt{3}y me \sqrt{3}.
\sqrt{3}x+y-\sqrt{3}y=3
Përdor vetinë e shpërndarjes për të shumëzuar 1-\sqrt{3} me y.
y-\sqrt{3}y=3-\sqrt{3}x
Zbrit \sqrt{3}x nga të dyja anët.
-\sqrt{3}y+y=-\sqrt{3}x+3
Rirendit kufizat.
\left(-\sqrt{3}+1\right)y=-\sqrt{3}x+3
Kombino të gjitha kufizat që përmbajnë y.
\left(1-\sqrt{3}\right)y=-\sqrt{3}x+3
Ekuacioni është në formën standarde.
\frac{\left(1-\sqrt{3}\right)y}{1-\sqrt{3}}=\frac{-\sqrt{3}x+3}{1-\sqrt{3}}
Pjesëto të dyja anët me 1-\sqrt{3}.
y=\frac{-\sqrt{3}x+3}{1-\sqrt{3}}
Pjesëtimi me 1-\sqrt{3} zhbën shumëzimin me 1-\sqrt{3}.
y=\frac{\sqrt{3}x+3x-3\sqrt{3}-3}{2}
Pjesëto -\sqrt{3}x+3 me 1-\sqrt{3}.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}