Gjej x (complex solution)
x=-3\sqrt{\frac{3^{-\log_{2}\left(5\right)+1}-y^{2}}{e}}
x=3\sqrt{\frac{3^{-\log_{2}\left(5\right)+1}-y^{2}}{e}}
Gjej y (complex solution)
y=-\frac{\sqrt{-ex^{2}+\frac{27}{3^{\log_{2}\left(5\right)}}}}{3}
y=\frac{\sqrt{-ex^{2}+\frac{27}{3^{\log_{2}\left(5\right)}}}}{3}
Gjej x
x=3^{-\frac{\log_{2}\left(5\right)}{2}+1}\sqrt{\frac{3-3^{\log_{2}\left(5\right)}y^{2}}{e}}
x=-3^{-\frac{\log_{2}\left(5\right)}{2}+1}\sqrt{\frac{3-3^{\log_{2}\left(5\right)}y^{2}}{e}}\text{, }|y|<3^{\frac{-\log_{2}\left(5\right)+1}{2}}\text{ or }\left(y\neq 0\text{ and }|y|\leq 3^{\frac{-\log_{2}\left(5\right)+1}{2}}\right)
Gjej y
y=\frac{3^{-\frac{\log_{2}\left(5\right)}{2}}\sqrt{27-e\times 3^{\log_{2}\left(5\right)}x^{2}}}{3}
y=-\frac{3^{-\frac{\log_{2}\left(5\right)}{2}}\sqrt{27-e\times 3^{\log_{2}\left(5\right)}x^{2}}}{3}\text{, }|x|\leq \frac{3^{\frac{-\log_{2}\left(5\right)+3}{2}}}{\sqrt{e}}
Grafiku
Kuiz
Algebra
5 probleme të ngjashme me:
\log _ { 3 } ( e x ^ { 2 } + 9 y ^ { 2 } ) + \log _ { 2 } 5 = 3
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}