Gjej x
\left\{\begin{matrix}x=-\frac{3}{2}=-1.5\text{, }&y\geq \frac{3}{2}\\x\in \begin{bmatrix}\frac{-\sqrt{4y+17}-3}{2},\frac{\sqrt{4y+17}-3}{2}\end{bmatrix}\text{, }&y\geq \sqrt{6}+2\\x=y-3\text{, }&y=2-\sqrt{6}\\x\in \begin{bmatrix}\frac{-\sqrt{4y+17}-3}{2},y-3\end{bmatrix}\text{, }&y>2-\sqrt{6}\text{ and }y<\sqrt{6}+2\end{matrix}\right.
Gjej y
\left\{\begin{matrix}y\geq x+3\text{, }&x\geq -\sqrt{6}-1\text{ and }x\leq \sqrt{6}-1\\y\geq x^{2}+3x-2\text{, }&x<-\sqrt{6}-1\text{ or }x>\sqrt{6}-1\end{matrix}\right.
Grafiku
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}