Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

y+x=-8
Merr parasysh ekuacionin e dytë. Shto x në të dyja anët.
x-y=4,x+y=-8
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x-y=4
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=y+4
Mblidh y në të dyja anët e ekuacionit.
y+4+y=-8
Zëvendëso x me y+4 në ekuacionin tjetër, x+y=-8.
2y+4=-8
Mblidh y me y.
2y=-12
Zbrit 4 nga të dyja anët e ekuacionit.
y=-6
Pjesëto të dyja anët me 2.
x=-6+4
Zëvendëso y me -6 në x=y+4. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=-2
Mblidh 4 me -6.
x=-2,y=-6
Sistemi është zgjidhur tani.
y+x=-8
Merr parasysh ekuacionin e dytë. Shto x në të dyja anët.
x-y=4,x+y=-8
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-8\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&-1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\-8\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\-8\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4+\frac{1}{2}\left(-8\right)\\-\frac{1}{2}\times 4+\frac{1}{2}\left(-8\right)\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-6\end{matrix}\right)
Bëj veprimet.
x=-2,y=-6
Nxirr elementet e matricës x dhe y.
y+x=-8
Merr parasysh ekuacionin e dytë. Shto x në të dyja anët.
x-y=4,x+y=-8
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
x-x-y-y=4+8
Zbrit x+y=-8 nga x-y=4 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-y-y=4+8
Mblidh x me -x. Shprehjet x dhe -x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-2y=4+8
Mblidh -y me -y.
-2y=12
Mblidh 4 me 8.
y=-6
Pjesëto të dyja anët me -2.
x-6=-8
Zëvendëso y me -6 në x+y=-8. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=-2
Mblidh 6 në të dyja anët e ekuacionit.
x=-2,y=-6
Sistemi është zgjidhur tani.