Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x-y=4,2x-5y=2
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x-y=4
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=y+4
Mblidh y në të dyja anët e ekuacionit.
2\left(y+4\right)-5y=2
Zëvendëso x me y+4 në ekuacionin tjetër, 2x-5y=2.
2y+8-5y=2
Shumëzo 2 herë y+4.
-3y+8=2
Mblidh 2y me -5y.
-3y=-6
Zbrit 8 nga të dyja anët e ekuacionit.
y=2
Pjesëto të dyja anët me -3.
x=2+4
Zëvendëso y me 2 në x=y+4. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=6
Mblidh 4 me 2.
x=6,y=2
Sistemi është zgjidhur tani.
x-y=4,2x-5y=2
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&-1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&-1\\2&-5\end{matrix}\right))\left(\begin{matrix}1&-1\\2&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-5\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&-1\\2&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-5\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&-5\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-5-\left(-2\right)}&-\frac{-1}{-5-\left(-2\right)}\\-\frac{2}{-5-\left(-2\right)}&\frac{1}{-5-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{3}\times 4-\frac{1}{3}\times 2\\\frac{2}{3}\times 4-\frac{1}{3}\times 2\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Bëj veprimet.
x=6,y=2
Nxirr elementet e matricës x dhe y.
x-y=4,2x-5y=2
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
2x+2\left(-1\right)y=2\times 4,2x-5y=2
Për ta bërë x të barabartë me 2x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 2 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
2x-2y=8,2x-5y=2
Thjeshto.
2x-2x-2y+5y=8-2
Zbrit 2x-5y=2 nga 2x-2y=8 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-2y+5y=8-2
Mblidh 2x me -2x. Shprehjet 2x dhe -2x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
3y=8-2
Mblidh -2y me 5y.
3y=6
Mblidh 8 me -2.
y=2
Pjesëto të dyja anët me 3.
2x-5\times 2=2
Zëvendëso y me 2 në 2x-5y=2. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
2x-10=2
Shumëzo -5 herë 2.
2x=12
Mblidh 10 në të dyja anët e ekuacionit.
x=6
Pjesëto të dyja anët me 2.
x=6,y=2
Sistemi është zgjidhur tani.