Gjej x
\left\{\begin{matrix}x=-\frac{500+9y-904x_{50}}{2\left(4-5y\right)}\text{, }&\left(x_{50}\geq \frac{20289}{36160}\text{ and }y<\frac{4}{5}\right)\text{ or }\left(y>\frac{-\sqrt{20289-36160x_{50}}+17}{20}\text{ and }y<\frac{\sqrt{20289-36160x_{50}}+17}{20}\text{ and }y>\frac{4}{5}\text{ and }x_{50}<\frac{20289}{36160}\right)\text{ or }\left(y<\frac{-\sqrt{20289-36160x_{50}}+17}{20}\text{ and }y<\frac{4}{5}\text{ and }x_{50}<\frac{20289}{36160}\right)\\x>\frac{4}{5}\text{, }&y=\frac{4}{5}\text{ and }x_{50}=\frac{317}{565}\end{matrix}\right.
Gjej y
\left\{\begin{matrix}y=-\frac{4\left(2x-226x_{50}+125\right)}{9-10x}\text{, }&\left(x_{50}\geq \frac{20289}{36160}\text{ and }x>\frac{9}{10}\right)\text{ or }\left(x>\frac{\sqrt{20289-36160x_{50}}+17}{20}\text{ and }x>\frac{9}{10}\text{ and }x_{50}<\frac{20289}{36160}\right)\text{ or }\left(x>\frac{-\sqrt{20289-36160x_{50}}+17}{20}\text{ and }x<\frac{\sqrt{20289-36160x_{50}}+17}{20}\text{ and }x<\frac{9}{10}\text{ and }x_{50}<\frac{20289}{36160}\right)\\y<\frac{9}{10}\text{, }&x=\frac{9}{10}\text{ and }x_{50}=\frac{317}{565}\end{matrix}\right.
Share
Kopjuar në clipboard
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}