Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

2y-x=1
Merr parasysh ekuacionin e dytë. Zbrit x nga të dyja anët.
x+y=8,-x+2y=1
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x+y=8
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=-y+8
Zbrit y nga të dyja anët e ekuacionit.
-\left(-y+8\right)+2y=1
Zëvendëso x me -y+8 në ekuacionin tjetër, -x+2y=1.
y-8+2y=1
Shumëzo -1 herë -y+8.
3y-8=1
Mblidh y me 2y.
3y=9
Mblidh 8 në të dyja anët e ekuacionit.
y=3
Pjesëto të dyja anët me 3.
x=-3+8
Zëvendëso y me 3 në x=-y+8. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=5
Mblidh 8 me -3.
x=5,y=3
Sistemi është zgjidhur tani.
2y-x=1
Merr parasysh ekuacionin e dytë. Zbrit x nga të dyja anët.
x+y=8,-x+2y=1
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}1&1\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&1\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\1\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-1\right)}&-\frac{1}{2-\left(-1\right)}\\-\frac{-1}{2-\left(-1\right)}&\frac{1}{2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}8\\1\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 8-\frac{1}{3}\\\frac{1}{3}\times 8+\frac{1}{3}\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\3\end{matrix}\right)
Bëj veprimet.
x=5,y=3
Nxirr elementet e matricës x dhe y.
2y-x=1
Merr parasysh ekuacionin e dytë. Zbrit x nga të dyja anët.
x+y=8,-x+2y=1
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
-x-y=-8,-x+2y=1
Për ta bërë x të barabartë me -x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me -1 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
-x+x-y-2y=-8-1
Zbrit -x+2y=1 nga -x-y=-8 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
-y-2y=-8-1
Mblidh -x me x. Shprehjet -x dhe x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-3y=-8-1
Mblidh -y me -2y.
-3y=-9
Mblidh -8 me -1.
y=3
Pjesëto të dyja anët me -3.
-x+2\times 3=1
Zëvendëso y me 3 në -x+2y=1. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
-x+6=1
Shumëzo 2 herë 3.
-x=-5
Zbrit 6 nga të dyja anët e ekuacionit.
x=5
Pjesëto të dyja anët me -1.
x=5,y=3
Sistemi është zgjidhur tani.