Gjej x, y
x=-5
y=10
Grafiku
Share
Kopjuar në clipboard
x+y=5,2x+3y=20
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x+y=5
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=-y+5
Zbrit y nga të dyja anët e ekuacionit.
2\left(-y+5\right)+3y=20
Zëvendëso x me -y+5 në ekuacionin tjetër, 2x+3y=20.
-2y+10+3y=20
Shumëzo 2 herë -y+5.
y+10=20
Mblidh -2y me 3y.
y=10
Zbrit 10 nga të dyja anët e ekuacionit.
x=-10+5
Zëvendëso y me 10 në x=-y+5. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=-5
Mblidh 5 me -10.
x=-5,y=10
Sistemi është zgjidhur tani.
x+y=5,2x+3y=20
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\20\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}5\\20\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}5\\20\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 5-20\\-2\times 5+20\end{matrix}\right)
Shumëzo matricat.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
Bëj veprimet.
x=-5,y=10
Nxirr elementet e matricës x dhe y.
x+y=5,2x+3y=20
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
2x+2y=2\times 5,2x+3y=20
Për ta bërë x të barabartë me 2x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 2 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
2x+2y=10,2x+3y=20
Thjeshto.
2x-2x+2y-3y=10-20
Zbrit 2x+3y=20 nga 2x+2y=10 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
2y-3y=10-20
Mblidh 2x me -2x. Shprehjet 2x dhe -2x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
-y=10-20
Mblidh 2y me -3y.
-y=-10
Mblidh 10 me -20.
y=10
Pjesëto të dyja anët me -1.
2x+3\times 10=20
Zëvendëso y me 10 në 2x+3y=20. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
2x+30=20
Shumëzo 3 herë 10.
2x=-10
Zbrit 30 nga të dyja anët e ekuacionit.
x=-5
Pjesëto të dyja anët me 2.
x=-5,y=10
Sistemi është zgjidhur tani.
Shembuj
Ekuacioni quadratik
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuacioni linear
y = 3x + 4
Aritmetika
699 * 533
Matrica
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ekuacioni i njëkohshëm
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferencimi
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrimi
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limitet
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}