Kaloni tek përmbajtja kryesore
Gjej x, y
Tick mark Image
Grafiku

Probleme të ngjashme nga kërkimi në ueb

Share

x+4y=0,3x+y=0
Për të zgjidhur një çift ekuacionesh duke përdorur zëvendësimin, në fillim zgjidh njërin prej ekuacioneve për njërën prej ndryshoreve. Më pas zëvendësoje rezultatin për atë ndryshore në ekuacionin tjetër.
x+4y=0
Zgjidh njërin prej ekuacioneve dhe gjej x duke veçuar x në anën e majtë të shenjës së barazimit.
x=-4y
Zbrit 4y nga të dyja anët e ekuacionit.
3\left(-4\right)y+y=0
Zëvendëso x me -4y në ekuacionin tjetër, 3x+y=0.
-12y+y=0
Shumëzo 3 herë -4y.
-11y=0
Mblidh -12y me y.
y=0
Pjesëto të dyja anët me -11.
x=0
Zëvendëso y me 0 në x=-4y. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=0,y=0
Sistemi është zgjidhur tani.
x+4y=0,3x+y=0
Vendos ekuacionet në formën standarde dhe më pas përdor matricat për të zgjidhur sistemin e ekuacioneve.
\left(\begin{matrix}1&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Shkruaj ekuacionet në formë matrice.
inverse(\left(\begin{matrix}1&4\\3&1\end{matrix}\right))\left(\begin{matrix}1&4\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Shumëzo majtas ekuacionit me matricën e kundërt të \left(\begin{matrix}1&4\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Prodhimi i një matrice me të kundërtën e saj është matrica e identitetit.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\3&1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Shumëzo matricat në anën e majtë të shenjës së barazimit.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-4\times 3}&-\frac{4}{1-4\times 3}\\-\frac{3}{1-4\times 3}&\frac{1}{1-4\times 3}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Për matricën 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), matrica e anasjelltë është \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kështu që ekuacioni i matricës mund të rishkruhet si problem i shumëzimit të matricave.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{4}{11}\\\frac{3}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Bëj veprimet.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Shumëzo matricat.
x=0,y=0
Nxirr elementet e matricës x dhe y.
x+4y=0,3x+y=0
Për të zgjidhur nëpërmjet eliminimit, koeficientet e njërës prej ndryshoreve duhet të jenë të njëjtë në të dyja ekuacionet në mënyrë që ndryshorja të thjeshtohet kur një ekuacion të zbritet nga tjetri.
3x+3\times 4y=0,3x+y=0
Për ta bërë x të barabartë me 3x, shumëzo të gjitha kufizat në secilën anë të ekuacionit të parë me 3 dhe të gjitha kufizat në secilën anë të ekuacionit të dytë me 1.
3x+12y=0,3x+y=0
Thjeshto.
3x-3x+12y-y=0
Zbrit 3x+y=0 nga 3x+12y=0 duke zbritur kufizat e ngjashme në secilën anë të shenjës së barazimit.
12y-y=0
Mblidh 3x me -3x. Shprehjet 3x dhe -3x thjeshtohen, duke e lënë ekuacionin vetëm me një ndryshore që mund të gjendet.
11y=0
Mblidh 12y me -y.
y=0
Pjesëto të dyja anët me 11.
3x=0
Zëvendëso y me 0 në 3x+y=0. Meqë ekuacioni që përftojmë përmban vetëm një ndryshore, mund ta gjesh x menjëherë.
x=0
Pjesëto të dyja anët me 3.
x=0,y=0
Sistemi është zgjidhur tani.